[1] Xu H., Liu Y., Qiang T., Qin L., Chen J*., Zhang P., Zhang Y., Zhang W., Tian W., Sun Z.*, Boosting Sodium Storage Properties of Titanium Dioxide by a Multiscale Design Based On MOF-derived Strategy. Energy Storage Materials, 2019, 17: 126-135. (2019即时因子15.9)
—— 钠离子电池负极TiO2的多尺度设计
“能源学人”微信号公众号介绍:https://mp.weixin.qq.com/s/Z-4rEJH8_DnpbarmUYEv8A
[2] Wang D., Zhang Y., Chen J.*, Xu H., Liguang Q., Li Y., Zhang W., Zhang P., Tian W., Guo X., Sun Z., Structural hybridization of ternary (0D, 1D and 2D) composites as anodes for high-performance Li-ion batteries. Energy Storage Materials, 2018, 13: 293-302. (2019即时因子15.9)
—— 锂离子电池负极过渡族金属氧化物的多维度杂化设计
[3] Xu H., Qin L., Chen J.*,Wang Z., Zhang W., Zhang P., Tian W., Zhang Y., Guo X., Sun Z.*, Toward advanced sodium-ion batteries: a wheel-inspired yolk-shell design for large-volume-change anode materials. Journal of Materials Chemistry A, 2018, 6: 13153-13163. (IF 9.9)
—— 多触点接触SnO2核壳结构钠离子电池负极设计
“能源学人”微信号公众号介绍:https://mp.weixin.qq.com/s/bC23U26KTLQuhYkoJ0kIyg
—— 锂离子电池负极MXene复合材料的微波快速制备
[5] Qin L., Xu H., Wang D., Zhu J., Chen J., Zhang W., Zhang P., Zhang Y., Tian W., Sun Z.*, Fabrication of Lithiophilic Copper Foam with Interfacial Modulation toward High-Rate Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2018, 10(33): 27764-27770. (IF8.1)
—— 高倍率锂金属负极Li/Cu复合材料界面调控
—— 锂离子电池负极多级孔结构SnO2@graphene复合材料的设计与开发
[7]. Zhuang X., Zhang Y.*, He L., Zhu Y., Tian Q., Guo X., Chen J.*, Li L., Wang Q., Song G., Yan X., Scalable synthesis of nano-Si embedded in porous C and its enhanced performance as anode of Li-ion batteries. Electrochimica Acta, 2017, 249: 166-172.(IF5.1)
—— 高性能锂离子电池硅负极的设计与制备
[8]. Elsiddig Z.A., Xu H., Wang D., Zhang W.*, Guo X., Zhang Y., Sun Z., Chen J.*, Modulating Mn4+ Ions and Oxygen Vacancies in Nonstoichiometric LaMnO3 Perovskite by a Facile Sol-Gel Method as High-Performance Supercapacitor Electrodes. Electrochimica Acta, 2017, 253: 422-429. (IF5.1)
—— 非化学计量比设计钙钛矿结构LaMnO3高性能超级电容器电极材料
—— 高性能锂离子电池负极Li4Ti5O12的缺陷设计与开发
[14]. Liu Y., Zhao M., Xu H., Chen J.*, Fabrication of continuous conductive network for Li4Ti5O12 anode by Cu-doping and graphene wrapping to boost lithium storage. Journal of Alloys and Compounds, 2019, 780: 1-7.(IF3.8)
—— 高性能锂离子电池负极Li4Ti5O12@Graphene的开发
—— 第一、第二作者均为本科生
[15] Elsiddig Z.A., Wang D., Xu H., Zhang W.*, Zhang T., Zhang P., Tian W., Sun Z., Chen J.*, Three-dimensional nitrogen-doped graphene wrapped LaMnO3 nanocomposites as high-performance supercapacitor electrodes. Journal of Alloys and Compounds, 2018, 740: 148-155.(IF3.8)
—— 高性能超级电容器电极材料LaMnO3@Graphene的开发
[16] Xu H., Wang D., Zhang W., Zhu J., Zhang T.*, Guo X., Zhang Y., Sun Z., Chen J.*, SnO2 nanorods encapsulated within a 3D interconnected graphene network architecture as high-performance lithium-ion battery anodes. Sustainable Energy & Fuels, 2018, 2(1): 262-270. (2017新刊)
—— 高性能锂离子电池负极SnO2纳米杆@Graphene的开发
[17]. Zhang W.*, Feng P., Chen J.*, Sun Z.*, Zhao B., Electrically conductive hydrogels for flexible energy storage systems. Progress in Polymer Science, 2019, 88: 220-240.(IF24.5)
—— 导电水凝胶研究综述
2、微纳米力学实验与理论;
在微纳米力学方面,重点研究非常态纳米力学实验技术,并结合分子动力学模拟与理论分析,研究材料(金属、陶瓷、复合材料、薄膜以及二维材料)在压入形变与失效过程中涉及的种种现象和内在机理。
主要相关论著
—— 关于环境可控纳米力学学术专著章节
[2] Chen J.*, Guo X.L., Tang Q., Zhuang C.Y., Liu J.S., Wu S.Q., Beake B.D., Nanomechanical properties of graphene on poly(ethylene terephthalate) substrate. Carbon, 2013, 55: 144-150. (IF7.1)
—— 膜基结构石墨烯/PET力学性能表征与分析
[3] Chen J.*, Gao Y., Liu W., Shi X., Li L., Wang Z., Zhang Y., Guo X., Liu G., Li W., Beake B.D., The influence of dehydration on the interfacial bonding, microstructure and mechanical properties of poly(vinyl alcohol)/graphene oxide nanocomposites. Carbon, 2015, 94: 845-855. (IF7.1)
——石墨烯/PVA宏微观力学性能与界面键合和显微组织的关联性
[3] Qin L., Li H., Shi X., Beake B.D., Xiao L., Smith J.F., Sun Z., Chen J.*, Investigation on dynamic hardness and high strain rate indentation size effects in aluminium (110) using nano-impact. Mechanics of Materials, 2019, 133: 55-62.(IF2.7)
—— 纳米冲击动态硬度的实验方法与理论分析
—— 东南大学材料学院首次在国际力学权威期刊Mechanics of Materials上发表学术论文。
[4] Chen J.*, Shi X., Beake B.D., Guo X., Wang Z., Zhang Y., Zhang X., Goodes S.R., An investigation into the dynamic indentation response of metallic materials. Journal of Materials Science, 2016, 51(18): 8310-8322. (IF3.0)
—— 典型金属材料纳米冲击行为分析
[5] Chen J.*, Li H., Beake B.D.*, Load sensitivity in repetitive nano-impact testing of TiN and AlTiN coatings. Surface and Coatings Technology, 2016, 308: 289-297. (IF2.9)
—— 纳米多次冲击统计分析研究
[6] Chen J.*, Ji R., Khan R., Li X., Beake B.D., Dong H., Effects of mechanical properties and layer structure on the cyclic dynamic loading of TiN-based coatings. Surface & Coatings Technology, 2011, 206(2-3): 522-529. (IF2.9)
—— 纳米多次冲击纳米多层薄膜的失效形式与机理
[7] Chen J.*, Beake B.D., Wellman R.G., Nicholls J.R., Dong H., An investigation into the correlation between nano-impact resistance and erosion performance of EB-PVD thermal barrier coatings on thermal ageing. Surface & Coatings Technology, 2012, 206(23): 4992-4998. (IF2.9)
—— 纳米多次冲击纳米多层薄膜的失效形式与机理
[8] Jiao S., Tu W., Zhang P.*, Zhang W., Qin L., Sun Z., Chen J.*, Atomistic insights into the prismatic dislocation loop on Al (100) during nanoindentation investigated by molecular dynamics. Computational Materials Science, 2018, 143: 384-390. (IF2.5)
—— 分子动力学LAMMPS解释Al(100)压入过程中棱柱位错环的产生机制
[9] Jiao S., Huang Q., Tu W., Chen J.*, Sun Z., Investigation on the phase transformation of monocrystalline silicon during nanoindentation at cryogenic temperature by molecular dynamics simulation. Physica B: Condensed Matter, 2019, 555: 139-144.(IF1.5)
—— 分子动力学LAMMPS研究低温条件下Si压入相变现象与机制
[10] Chen J.*, Bell G.A., Dong H.S., Smith J.F., Beake B.D., A study of low temperature mechanical properties and creep behaviour of polypropylene using a new sub-ambient temperature nanoindentation test platform. Journal of Physics D-Applied Physics, 2010, 43: 425404. (IF2.4)
—— 首台商用低温纳米压入装置的研发与应用
[11] Chen J., Beake B.D.*, Bell G.A., Li Y., Gao F., Investigation of the nanomechanical properties of nylon 6 and nylon 6/clay nanocomposites at sub-ambient temperatures. Journal of Experimental Nanoscience, 2016, 11(9): 695-706. (IF1.4)
—— 低温纳米压入与湿度控制技术与应用
[12] Chen J.*, Bell G.A., Beake B.D., Dong H.S., Low temperature nano-tribological study on a functionally graded tribological coating using nanoscratch tests. Tribology Letters, 2011, 43(3): 351-360. (IF2.2)
—— 低温纳米划擦技术与应用
[13] Chen J.*, Shen Y., Liu W., Beake B.D., Shi X., Wang Z., Zhang Y., Guo X., Effects of loading rate on development of pile-up during indentation creep of polycrystalline copper. Materials Science and Engineering: A, 2016, 656: 216-221.(IF3.4)
—— 高塑性Cu的压入隆起现象的速率敏感性
[14] 汪可华, 陈坚*, 王福德, 梁晓康与孙正明, 材料应力-应变的球形纳米压入法研究进展. 材料导报, 2019, 5 (已接受,待发表)
—— 纳米压入法研究材料应力-应变关系的理论与实验综述
3、等离子体表面改性与薄膜技术开发与应用;
在等离子体表面改性与薄膜技术开发与应用方面,重点研究工程材料的减摩、耐磨、防腐的表面保护技术,并为相关企业解决技术难题。近年来面向高性能储能材料也陆续开展了先进等离子体技术的研发工作。
主要相关论著:
—— 用于体育器械的轻金属材料表面处理技术学术专著章节
[2] Chen J.*, Shi X., Qi S., Mohai M., Bertóti I., Gao Y., Dong H., Reducing and multiple-element doping of graphene oxide using active screen plasma treatments. Carbon, 2015, 95: 338-346. (IF7.1)
—— 氧化石墨烯的等离子体处理技术
[3] Shi X., Beake B.D.*, Liskiewicz T.W., Chen J.*, Sun Z., Failure mechanism and protective role of ultrathin ta-C films on Si (100) during cyclic nano-impact. Surface and Coatings Technology, 2019, 364: 32-42.
—— 高力学性能超薄类金刚石薄膜ta-C的冲击失效
[4] Shi X., Liskiewicz T.W.*, Beake B.D., Chen J.*, Wang C., Tribological performance of graphite-like carbon films with varied thickness. Tribological International, 2019.doi.org/10.1016/j.triboint.2019.01.045 (IF3.2)
——类金刚石薄膜GLC的摩擦学性能
[5] Chen J., Li X.Y., Bell T., Dong H.*, Improving the wear properties of Stellite 21 alloy by plasma surface alloying with carbon and nitrogen. Wear, 2008, 264(3-4): 157-165.(IF3.0)
——CoCr合金的表面改性技术
[6] Chen J.*, Li X.Y., Ji R., Khan R., Fuentes G., Nanomechanical properties of duplex treated 42CrMo4 steel. Surface Engineering, 2013, 29(6): 462-467.(IF2.0)
——离子氮化与CrN复合表面处理技术
[7] Song B., Li Y., Wang K., Cong Z., Gao B., Song Z.*, Chen J.*, Nano-mechanical properties of TaNbHfZr metallic glass films. Surface Engineering, 2019: 1-8.(IF2.0)
——高熵BCC成分薄膜的制备与开发
[8] Yang Z., Zhang K., Qiu N., Zhang H., Wang Y.*, Chen J.*, Effects of helium implantation on mechanical properties of (Al0.31Cr0.20Fe0.14Ni0.35)O high entropy oxide films. Chinese Physics B, 2019, 28(4): 46201.(IF1.3)
——高熵成分氧化物薄膜