9947
当前位置: 首页   >  成果及论文
成果及论文

Google Scholar: https://scholar.google.com/citations?user=TdVpqUQAAAAJ&hl=en

ORCID: 0000-0003-4452-022X

(# equal contribution; * corresponding author)


After joining ZJU

(22)     Zhongliang Huang#, Yingru Wang#, Jing Xia, Shengnan Hu, Nanjun Chen, Tianyi Ding, Changhong Zhan, Chih-Wen Pao, Zhiwei Hu, Wei-Hsiang Huang, Tong Shi, Xiangmin Meng, Yong Xu*, Liang Cao*, and Xiaoqing Huang*, Atom-glue stabilized Pt-based intermetallic nanoparticles, Sci. Adv., 2024, 10, eadq6727 (DOI: 10.1126/sciadv.adq6727).

(21)   Yiran Cheng, Liang Cao*, Rational design of high-entropy alloy nanoparticle catalysts through high-throughput composition space screening, Manuscript under Review, 2024, posted on ChemRxiv (DOI: 10.26434/chemrxiv-2024-m3s9j).

(20)   Ming-Rong Qu#, Yi-Ran Cheng#, Heng-Li Duan#, You-Yi Qin, Si-Hua Feng, Xiao-Zhi Su, Yi-Fei Yuan, Wen-Sheng Yan, Liang Cao*, Jie Xu*, Rui Wu*, & Shu-Hong Yu*, Defective Tungsten Oxides with Stacking Faults for Proton Exchange Membrane Green-Hydrogen Generation, Small, 2024, 2401159.

(19)   Yinchao Yao#, Tong Shi#;, Wenxing Chen, Jiehua Wu, Yunying Fan, Yichun Liu, and Liang Cao* and Zhuo Chen*, A surface strategy boosting the ethylene selectivity for CO2 reduction and in situ mechanistic insights, Nat. Commun., 2024, 15, 1257.

(18)   Yuzhuo Chen, Hao Wang, Bing Lu, Ni Yi, Liang Cao, Yong Wang, Shanjun Mao*, Fine-structure sensitive deep learning framework for prediction of catalytic properties with high precision, Chin. J. Catal., 2023, 50, 284-296.

(17)   Cao, Liang*; Mueller, Tim*. Catalytic Activity Maps for Alloy Nanoparticles. J. Am. Chem. Soc. 2023, 145(13), 7352-7360.

(16)    Shen, Hao; Wang, Yunzhe.; Chakraborty, Tanmoy; Zhou, Guangye; Wang, Canhui; Fu, Xianbiao; Wang, Yuxuan; Zhang, Jinyi; Li, Chenyang; Xu, Fei; Cao, Liang; Mueller, Tim*; Wang, Chao*. Asymmetrical C–C Coupling for Electroreduction of CO on Bimetallic Cu–Pd Catalysts. ACS Catal. 2022, 12(9), 5275-5283.

(15)    Cao, Liang*. Recent Advances in the Application of Machine-Learning Algorithms to Predict Adsorption Energies. Trends Chem. 2022, 4(4), 99-114.


Before joining ZJU

(14)    Li, Chenyang; Nilson, Thomas; Cao, Liang; Mueller, Tim*. Predicting activation energies for vacancy-mediated diffusion in alloys using a transition-state cluster expansion. Phys. Rev. Mater. 2021, 5(1), 013803.

(13)    Wang, Yuxuan; Li, Chenyang; Fan, Zhanxi; Chen, Ye; Li, Xing; Cao, Liang; Wang, Canhui; Wang, Lei; Su, Dong; Zhang, Hua; Mueller, Tim*; Wang, Chao*. Undercoordinated Active Sites on 4H Gold Nanostructures for CO2 Reduction. Nano Lett. 2020, 20 (11), 8074–8080.

(12)    Cao, Liang; Niu Le; Mueller, Tim*. Computationally Generated Maps of Surface Structures and Catalytic Activities for Alloy Phase Diagrams. Proc. Natl. Acad. Sci. U. S. A. (PNAS) 2019, 116(44), 22044-22051.

(11)    Wang, Yuxuan#; Cao, Liang#; Libretto, Nicole J; Li, Xing; Li, Chenyang; Wan, Yidong; He, Connie; Lee, Jinsung; Gregg, John; Zong, Han; Su, Dong; Miller, Jeffery T; Mueller, Tim*; Wang, Chao*. Ensemble Effect in Bimetallic Electrocatalysts for CO2 Reduction. J. Am. Chem. Soc. 2019, 141(42), 16635-16642. (# equal contribution)

(10)    Cao, Liang#; Zhao, Zipeng#; Liu, Zeyan#; Gao, WenPei; Dai, Sheng; Xue, Wang; Duan, Xiangfeng; Pan, Xiaoqing; Mueller, Tim*; Huang, Yu*. Significantly Enhanced Stability of PtNi-based ORR Catalysts by Tuning Surface Elemental Distribution. Matter 2019, 1(6), 1567–1580. (# equal contribution)

(9)    Cao, Liang; Li, Chenyang; Mueller, Tim*. The Use of Cluster Expansions to Predict the Structures and Properties of Surfaces and Nanostructured Materials. J. Chem. Inf. Model. 2018, 58(12), 2401–2413. Invited Article. (Materials Informatics special issue, Featured on Cover)

(8)    Li, Chenyang#; Raciti, David#; Pu, TianCheng; Cao, Liang; He, Connie; Wang, Chao*; Mueller, Tim*. Improved Prediction of Nanoalloy Structures by the Explicit Inclusion of Adsorbates in Cluster Expansions. J. Phys. Chem. C 2018, 122(31), 18040-18047.

(7)    Jia, Qingying*,#; Zhao, Zipeng#; Cao, Liang#; Li, Jingkun; Ghoshal, Shraboni; Davies, Veronica; Stavitski, Eli; Attenkofer, Klaus; Liu, Zeyan; Li, Mufan; Duan, Xiangfeng; Mukerjee, Sanjeev; Mueller, Tim*; Huang, Yu*. Roles of Mo Surface Dopants in Enhancing the ORR Performance of Octahedral PtNi Nanoparticles. Nano Lett. 2018, 18(2), 798-804. (# equal contribution)

(6)    Cao, Liang#; Raciti, David#; Li, Chenyang; Livi, Kenneth; Rottmann, Paul; Hemker, Keven; Mueller, Tim*; Wang, Chao*. Mechanistic Insights for Low-Overpotential Electroreduction of CO2 to CO on Copper Nanowires. ACS Catal. 2017, 7(12), 8578–8587. (# equal contribution)

(5) Raciti, David#; Cao, Liang#; Rottmann, Paul; Tang, Xin; Li, Chenyang; Hicks, Zachary; Livi, Kenneth; Bowen, Kit; Hemker, Keven; Mueller, Tim*; Wang, Chao*. Low-Overpotential Electroreduction of Carbon Monoxide Using Copper Nanowires. ACS Catal. 2017, 7(7), 4467-4472. (# equal contribution)

(4)  Cao, Liang; Mueller, Tim*. Theoretical Insights into the Effects of Oxidation and Mo-Doping on the Structure and Stability of Pt-Ni Nanoparticles. Nano Lett. 2016, 16(12), 7748-7754.

(3) Cao, Liang; Mueller, Tim*. Rational Design of Pt3Ni Surface Structures for the Oxygen Reduction Reaction. J. Phys. Chem. C 2015, 119(31), 17735-17747.

(2) Huang, Xiaoqing#; Zhao, Zipeng#; Cao, Liang; Chen, Yu; Zhu, Enbo; Lin, Zhaoyang; Li, Mufan; Yan, Aiming; Zettl, Alex; Wang, Y. Morris; Duan, Xiangfeng; Mueller, Tim*; Huang, Yu*. High-Performance Transition Metal−Doped Pt3Ni Octahedra for Oxygen Reduction Reaction. Science 2015, 348(6240), 1230−1234.

(1)  Dong, Liang#; Liu, Yun#; Lu, Yang; Zhang, Li; Man, Na; Cao, Liang; Ma, Kai; An, Duo; Lin, Jun; Xu, Yun-Jun, Xu, Wei-Ping; Wu, Wen-Bin; Yu, Shu-Hong*; Wen, Long-Ping*. Tuning Magnetic Property and Autophagic Response for Self-Assembled Ni–Co Alloy Nanocrystals. Adv. Funct. Mater. 2013, 23(47), 5930-5940.