938
当前位置: 首页   >  成果及论文
成果及论文

[2024] Zhou, X.;  Zhu, H.;  Cao, K.;  Wang, Y.;  Kong, Y.; Cao, J., Color Generation and Polarization-Sensitive Encryption by Laser Writing on Plasmonic Reflector Arrays. ACS Applied Materials & Interfaces 2024. https://doi.org/10.1021/acsami.4c07401

[2024] He, J.;  Jia, H.;  Chen, H.;  Wang, T.;  Liu, S.;  Cao, J.;  Gao, Z.;  Shang, C.; Cui, T. J., Mode engineering in reconfigurable fractal topological circuits. Physical Review B 2024, 109 (23), 235406. https://doi.org/10.1103/PhysRevB.109.235406

[2024] Cao, K.;  Wu, M.;  Wang, E.;  Liu, C.;  Zhu, H.;  Ma, C.; Cao, J., Dual-mode SPR/SERS biosensor utilizing metal nanogratings fabricated via wet etching-assisted direct laser interference patterning. Applied Surface Science 2024, 655, 159621. https://doi.org/10.1016/j.apsusc.2024.159621

[2023] Wang, E.;  Cao, J.;  Cao, K.;  Xu, N.; Zhu, H., Compact surface plasmon resonance sensor using the digital versatile disc grating as a coupler and a disperser. Optical Engineering 2023, 62 (1), 017105. https://doi.org/10.1117/1.OE.62.1.017105

[2023] Shen, D.;  Cao, J.; Wan, W., Wavefront shaping with nonlinear four-wave mixing. Scientific Reports 2023, 13 (1), 2750. https://doi.org/10.1038/s41598-023-29621-w

[2022] Wu, M.;  Xu, N.;  Wang, E.;  Gen, S.;  Zhu, H.;  Liu, C.; Cao, J., Nanogratings fabricated by wet etching assisted femtosecond laser modification of silicon for surface plasmon resonance sensing. Applied Surface Science 2022, 603, 154446. https://doi.org/10.1016/j.apsusc.2022.154446

[2022] Long, S.;  Wang, E.;  Wu, M.;  Zhu, H.;  Xu, N.;  Wang, Y.; Cao, J., Sensing absorptive fluids with backside illuminated grating coupled SPR sensor fabricated by nanoimprint technology. Sensors and Actuators A: Physical 2022, 337, 113416. https://doi.org/10.1016/j.sna.2022.113416

[2021] 吴萌;  耿山楠;  曹建军;  钱维莹;  高淑梅;  刘诚; 江苏省轻工光电工程技术研究中心, 真空蒸镀金薄膜的二阶非线性系数研究. 光学技术 2021, 47 (06), 679-682. 

[2021] Zhou, Z.;  Liu, W.;  He, J.;  Chen, L.;  Luo, X.;  Shen, D.;  Cao, J.;  Dan, Y.;  Chen, X.; Wan, W., Far-field super-resolution imaging by nonlinearly excited evanescent waves. 2021, 3  Advanced Photonics (2), 025001. https://doi.org/10.1117/1.AP.3.2.025001

[2021] Liu, M.;  Xu, N.;  Wang, B.;  Qian, W.;  Xuan, B.; Cao, J., Polarization independent and broadband achromatic metalens in ultraviolet spectrum. Optics Communications 2021, 497, 127182. https://doi.org/10.1016/j.optcom.2021.127182

[2021] Liu, M.;  Cao, J.;  Xu, N.; Wang, B.-X., Broadband achromatic metalens for linearly polarized light from 450 to 800  nm. Appl. Opt. 2021, 60 (30), 9525-9529. https://doi.org/10.1364/AO.440431

[2021] Cao, J.;  Geng, S.;  Wu, M.;  Long, S.;  Xu, N.;  Gao, S.; Wan, W., Tunable and plasmon-enhanced four-wave mixing on an aluminum grating. Journal of Optics 2021, 23 (9), 095004. DOI 10.1088/2040-8986/ac1320

[2020] Wang, Q.;  Zheng, Y.;  Yu, C.;  Chen, X.;  Wang, E.;  Long, S.;  Zhu, H.;  Gao, S.; Cao, J., Fabrication of Silver-Silicon Gratings for Surface Plasmon Excitation Using Nanosecond Laser Interference Lithography. Plasmonics 2020, 15 (6), 1639-1644. https://doi.org/10.1007/s11468-020-01183-x

[2020] Wang, B.-X.;  He, Y.;  Xu, N.;  Wang, X.;  Wang, Y.; Cao, J., Design of dual-band polarization controllable metamaterial absorber at terahertz frequency. Results in Physics 2020, 17, 103077. https://doi.org/10.1016/j.rinp.2020.103077

[2020] Wang, B.-X.;  He, Y.;  Lou, P.;  Xu, N.;  Wang, X.;  Wang, Y.; Cao, J., Multiple-Band Terahertz Metamaterial Absorber Using Multiple Separated Sections of Metallic Rectangular Patch. Front. Phys. 2020, 8. https://doi.org/10.3389/fphy.2020.00308

[2020] Long, S.;  Cao, J.;  Wang, Y.;  Gao, S.;  Xu, N.;  Gao, J.; Wan, W., Grating coupled SPR sensors using off the shelf compact discs and sensitivity dependence on grating period. Sensors and Actuators Reports 2020, 2 (1), 100016. https://doi.org/10.1016/j.snr.2020.100016

[2020] Long, S.;  Cao, J.;  Geng, S.;  Xu, N.;  Qian, W.; Gao, S., Optimization of plasmonic sensors based on sinusoidal and rectangular gratings. Optics Communications 2020, 476, 126310. https://doi.org/10.1016/j.optcom.2020.126310

[2020] He, Y.;  Wang, B.-X.;  Lou, P.;  Xu, N.;  Wang, X.;  Wang, Y.; Cao, J., Convert from Fano resonance to electromagnetically induced transparency effect using anti-symmetric H-typed metamaterial resonator. Optical and Quantum Electronics 2020, 52 (9), 391. https://doi.org/10.1007/s11082-020-02513-3

[2020] 耿山楠, 曹建军, 钱维莹, 高淑梅. X,Y,Z切石英晶体Maker条纹理论和实验对比[J].光学技术,2020,46(05):597-602. DOI:10.13741/j.cnki.11-1879/o4.2020.05.016.

[2019] Cao, J.;  Sun, Y.;  Kong, Y.; Qian, W., The Sensitivity of Grating-Based SPR Sensors with Wavelength Interrogation. Sensors 2019, 19 (2), 405.  https://doi.org/10.3390/s19020405

[2018] Sun, Y.;  Sun, S.;  Wu, M.;  Gao, S.; Cao, J., Refractive index sensing using the metal layer in DVD-R discs. RSC Advances 2018, 8 (48), 27423-27428. https://doi.org/10.1039/C8RA03191F 

[2018] Kong, Y.;  Cao, J.;  Qian, W.;  Liu, C.; Wang, S., Multiple Fano Resonance Based Optical Refractive Index Sensor Composed Of Micro-Cavity and Micro-Structure. IEEE Photonics Journal 2018, 10 (6), 1-10. DOI: 10.1109/JPHOT.2018.2881264

[2018] Cao, M.;  Cao, J.;  Liu, M.;  Sun, Y.;  Wu, M.;  Guo, S.; Gao, S., Wavelength dependence of nanosecond laser induced surface damage in fused silica from 260 to 1550 nm. Journal of Applied Physics 2018, 123 (13), 135105. https://doi.org/10.1063/1.5015943 

[2018] Cao, J.;  Sun, Y.;  Zhu, H.;  Cao, M.;  Zhang, X.; Gao, S., Plasmon-Enhanced Optical Transmission at Multiple Wavelengths Through an Asymmetric Corrugated Thin Silver Film. Plasmonics 2018, 13 (5), 1549-1554. https://doi.org/10.1007/s11468-017-0663-5

[2018] Cao, J.;  Kong, Y.;  Gao, S.; liu, C., Plasmon resonance enhanced mid-infrared generation by graphene on gold gratings through difference frequency mixing. Optics Communications 2018, 406, 183-187. https://doi.org/10.1016/j.optcom.2017.04.023

[2018] 曹建军,孙源,钱维莹,等.一种基于DVD光栅结构的液体折射率测量装置[P].江苏:CN201820597426.3,2018-11-16.

[2017] Cao, J.;  Shen, D.;  Zheng, Y.;  Feng, Y.;  Kong, Y.; Wan, W., Femtosecond OPO based on MgO:PPLN synchronously pumped by a 532 nm fiber laser. Laser Physics 2017, 27 (5), 055402. DOI 10.1088/1555-6611/aa637b

[2017] Cao, J.;  Kong, Y.;  Gao, S.; Wan, W., Subwavelength imaging by a nonlinear negative refraction lens through four wave mixing. Opt. Express 2017, 25 (20), 24272-24280. https://doi.org/10.1364/OE.25.024272

[2016] Zheng, Y.;  Yang, J.;  Shen, Z.;  Cao, J.;  Chen, X.;  Liang, X.; Wan, W., Optically induced transparency in a micro-cavity. Light: Science & Applications 2016, 5 (5), e16072-e16072. https://doi.org/10.1038/lsa.2016.72

[2016] Feng, Y.;  Zheng, Y.;  Cao, J.;  Shang, C.; Wan, W., Phase-controlled two-wave mixing in a moving grating. J. Opt. Soc. Am. B 2016, 33 (1), 105-109. https://doi.org/10.1364/JOSAB.33.000105

[2016] Cao, J.;  Shen, D.;  Feng, Y.; Wan, W., Nonlinear negative refraction by difference frequency generation. Applied Physics Letters 2016, 108 (19), 191101. https://doi.org/10.1063/1.4948974

[2015] Wang, X.;  Cao, J.;  Zhao, X.;  Zheng, Y.;  Ren, H.;  Deng, X.; Chen, X., Sum-frequency nonlinear Cherenkov radiation generated on the boundary of bulk medium crystal. Opt. Express 2015, 23 (25), 31838-31843. https://doi.org/10.1364/OE.23.031838

[2015] Cao, J.;  Shang, C.;  Zheng, Y.;  Feng, Y.;  Chen, X.;  Liang, X.; Wan, W., Dielectric Optical-Controllable Magnifying Lens by Nonlinear Negative Refraction. Scientific Reports 2015, 5, 11892. https://doi.org/10.1038/srep11892

[2014] Liu, X.;  Guo, M.;  Cao, J.;  Lin, J.;  Tsang, Y. H.;  Chen, X.; Huang, H., Large-diameter titanium dioxide nanotube arrays as a scattering layer for high-efficiency dye-sensitized solar cell. Nanoscale Research Letters 2014, 9 (1), 362. https://doi.org/10.1186/1556-276X-9-362

[2014] Ge, Y.;  Cao, J.;  Shen, Z.;  Zheng, Y.;  Chen, X.; Wan, W., Terahertz wave generation by plasmonic-enhanced difference-frequency generation. J. Opt. Soc. Am. B 2014, 31 (7), 1533-1538. https://doi.org/10.1364/JOSAB.31.001533

[2014] Cao, J.;  Zheng, Y.;  Feng, Y.;  Chen, X.; Wan, W., Metal-free flat lens using negative refraction by nonlinear four-wave mixing. Physical Review Letters 2014, 113 (21), 217401. https://doi.org/10.1103/PhysRevLett.113.217401