171889
当前位置: 首页   >  成果及论文
成果及论文

187.Zhao,Q.;Zhang,Q.;Xu,Y.;Han,A.;He,H.;Zheng,H.;Zhang,W.;Lei,H.*;Apfel,U.;Cao,R.*; Improving Active Site Local Proton Transfer in Porous Organic Polymers for Boosted Oxygen Electrocatalysis. Angew. Chem. Int. Ed., 2024, 63, e202414104. https://onlinelibrary.wiley.com/doi/full/10.1002/anie.202414104

186.Liu,Y.;Wang,M.;Liang,Z.*;Zheng,H.*; Surfactant-metal-organic framework complexes and their derivatives: advances in electrocatalysis. Sci. China Chem., 2024, 67, 3209-3222. https://link.springer.com/article/10.1007/s11426-024-2027-2

185.Liang,Z.;Zhou,G.;Tan,H.;Mou,Y.;Zhang,J.;Guo,H.;Yang,S.;Lei,H.;Zheng,H.*;Zhang,W.;Lin,H.*;Cao,R.*; Constructing Co4(SO4)4 Clusters within Metal–Organic Frameworks for Efficient Oxygen Electrocatalysis. Adv. Mater., 2024, 36, 2408094. https://onlinelibrary.wiley.com/doi/10.1002/adma.202408094

184.Han,J.;Tan,H.;Guo,K.;Lv,H.;Peng,X.;Zhang,W.;Lin,H.*;Apfel,U.;Cao,R.*; The "Pull Effect" of a Hanging ZnII on Improving the Four-Electron Oxygen Reduction Selectivity with Co Porphyrin. Angew. Chem. Int. Ed., 2024, 63, e202409793. https://onlinelibrary.wiley.com/doi/10.1002/anie.202409793

183.Yang,S.;Jiang,P.;Yue,K.;Guo,K.;Yang,L.;Han,J.;Peng,X.;Zhang,X.;Zheng,H.;Yang,T.;Cao,R.;Yan,Y.*;Zhang,W.*; Manganese pyrophosphate with multiple coordinated water molecules for electrocatalytic water oxidation. Chin. J. Catal., 2024, 62, 166-177. https://www.sciencedirect.com/science/article/pii/S1872206724600525

182.Zheng,H.;Che,S.*; Precision design of Ti sites for unprecedented catalytic performance. Natl. Sci. Rev., 2024, 11, nwae172. https://academic.oup.com/nsr/article/11/7/nwae172/7683275

181.Yang,S.;Liu,X.;Li,S.;Yue,K.;Fan,Y.;Yan,Y.*;Zhang,W.*; Effects from Surface Structures of Manganese Phosphate on Electrocatalytic Water Oxidation. J. Phys. Chem. C, 2024, 128, 8181-8187. https://pubs.acs.org/doi/10.1021/acs.jpcc.4c01930

180.He,H.;Qiu,Z.;Yin,Z.;Kong,J.;Dang,J.*;Lei,H.*;Zhang,W.;Cao,R.*; The meso-substituent electronic effect of Fe porphyrins on the electrocatalytic CO2 reduction reaction. Chem. Commun., 2024, 60, 5916-5919. https://pubs.rsc.org/en/content/articlelanding/2024/cc/d4cc01630k

179.Liu,T.;Qin,H.;Xu,Y.;Peng,X.;Zhang,W.;Cao,R.*; Steric Effects on the Oxygen Reduction Reaction with Cobalt Porphyrin Atropisomers. ACS Catal., 2024, 14, 6644-6649. https://pubs.acs.org/doi/10.1021/acscatal.4c01295

178.Zhao,Q.;Zhang,Q.;Wu,Y.;Xiao,Z.;Peng,Y.;Zhou,Y.;Zhang,W.;Lei,H.*;Cao,R.*; Pore size modulation of cobalt-corrole-based porous organic polymers for boosted electrocatalytic oxygen reduction reaction. Materials Today Catalysis, 2024, 5, 100050. https://www.sciencedirect.com/science/article/pii/S2949754X24000127

177.Yang,S.;Liu,X.;Li,S.;Yuan,W.;Yang,L.;Wang,T.;Zheng,H.*;Cao,R.*;Zhang,W.*; The mechanism of water oxidation using transition metal-based heterogeneous electrocatalysts. Chem. Soc. Rev., 2024, 53, 5593-5625. https://pubs.rsc.org/en/content/articlelanding/2024/cs/d3cs01031g

176.Yang,L.;Yang,S.;Kong,J.;Yuan,W.;Li,S.;Liu,X.;Cao,R.;Zhang,W.*; Blocking the bimolecular pathway of water oxidation electrocatalyzed by copper porphyrin with a surfactant. Catal. Sci. Technol., 2024, 14, 3131-3136. https://pubs.rsc.org/en/Content/ArticleLanding/2024/CY/D4CY00292J

175.Yao,H.;Zhang,H.*;Zheng,H.*; The Construction of Helical Carbon-Based Skeletons for Enhanced Electrocatalytic Performance. ChemCatChem, 2024, 16, e202400177. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202400177

174.Xu,X.;Liu,J.;Xiao,Z.;Li,S.;Zhang,Y.;Song,P.;Lin,K.;Zhang,L.;Zheng,H.*;Zhou,Y.*;Chen,X.*; Zeolitic imidazolate framework-90 loaded with methylprednisolone sodium succinate effectively reduces hypertrophic scar in vivo. Nanoscale, 2024, 16, 6708-6719. https://pubs.rsc.org/en/content/articlelanding/2024/nr/d3nr05208g

173.Cao,Y.;Mou,Y.;Zhang,J.;Zhang,R.*;Liang,Z.*; Porphyrin-based frameworks and derivatives for the oxygen reduction reaction. Materials Today Catalysis, 2024, 4, 100044. https://www.sciencedirect.com/science/article/pii/S2949754X24000061

172.Kong,J.;Qin,H.;Yang,L.;Zhang,J.;Peng,Y.;Gao,Y.;Wu,Y.;Nam,W.*;Cao,R.*; Covalent Tethering of Cobalt Porphyrins on Phenolic Resins for Electrocatalytic Oxygen Reduction and Evolution Reactions. ChemPhysChem, 2024, 25, e202400017. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cphc.202400017

171.Peng,X.;Zhang,M.;Qin,H.;Han,J.;Xu,Y.;Li,W.;Zhang,X.*;Zhang,W.;Apfel,U.;Cao,R.*; Switching Electrocatalytic Hydrogen Evolution Pathways through Electronic Tuning of Copper Porphyrins. Angew. Chem. Int. Ed., 2024, 63, e202401074. https://onlinelibrary.wiley.com/doi/10.1002/anie.202401074

170.Yang,S.;Yue,K.;Liu,X.;Li,S.;Zheng,H.;Yan,Y.*;Cao,R.;Zhang,W.*; Electrocatalytic water oxidation with manganese phosphates. Nat. Commun., 2024, 15, 1410. https://www.nature.com/articles/s41467-024-45705-1

169.Hua,R.;Bao,Z.;Peng,Y.;Lei,H.;Liang,Z.;Zhang,W.;Cao,R.;Zheng,H.*; A twisted carbonaceous nanotube as the air-electrode for flexible Zn–Air batteries. Chem. Commun., 2024, 60, 1476-1479. https://pubs.rsc.org/en/content/articlelanding/2024/cc/d3cc06143d

168.Liang,Z.;Zhang,J.;Zheng,H.*;Cao,R.*; Hierarchically porous aggregates of Co–N–C nanoparticles for oxygen electrocatalysis. Chem. Commun., 2024, 60, 2216-2219. https://pubs.rsc.org/en/Content/ArticleLanding/2024/CC/D3CC05597C

167.Wang,Y.;Yang,T.;Fan,X.;Bao,Z.;Tayal,A.;Tan,H.;Shi,M.;Liang,Z.;Zhang,W.;Lin,H.*;Cao,R.;Huang,Z.*;Zheng,H.*; Anchoring Fe Species on the Highly Curved Surface of S and N Co-Doped Carbonaceous Nanosprings for Oxygen Electrocatalysis and a Flexible Zinc-Air Battery. Angew. Chem. Int. Ed., 2024, 63, e202313034. https://onlinelibrary.wiley.com/doi/10.1002/anie.202313034

166.Peng,Y.;Li.S.;Wang,M.;Xiong,X.;Dang,J.;Zhang,W.;Cao,R.;Zheng,H.*; Facet engineering of a two-dimensional metal-organic framework with uniquely oriented layered-structure for electrocatalytic oxygen reduction reaction. J. Colloid Interface Sci., 2024, 658, 518-527. https://www.sciencedirect.com/science/article/pii/S0021979723024311

165.Sun,H.;Awada,H.;Lei,H.;Aljabour.A.;Song,L.;Offenthaler,S.;Cao,R.*;Schöfberger,W.*; Tuning ORR selectivity of π-conjugated cobalt corroles from 2e- to 4e-. Materials Today Catalysis, 2024, 4, 100038. https://www.sciencedirect.com/science/article/pii/S2949754X23000388

164.Liang,Z.;Zhang,J.;Suo,W.;Zheng,H.;Wang,Y.*;Cao,R.*; Hollow nanoparticles doped hierarchical hexagonal star shaped cobalt-based phosphosulfides for water splitting. J. Alloys Compd., 2024, 971, 172775. https://www.sciencedirect.com/science/article/pii/S0925838823040781

163.Li,X.*;Qin,H.;Han,J.;Jin,X.;Xu,Y.;Yang,S.;Zhang,W.;Cao,R.*; A One-Pot Three-In-One Synthetic Strategy to Immobilize Cobalt Corroles on Carbon Nanotubes for Oxygen Electrocatalysis. Adv. Funct. Mater., 2024, 34, 2310820. https://onlinelibrary.wiley.com/doi/10.1002/adfm.202310820

162.Yang,S.;Han,J.;Zhang,W.*; Proton-Coupled Electron Transfer in Electrocatalytic Water Splitting. Chem. Eur. J., 2023, 29, e202302770. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202302770

161.Meng,J.;Qin,H.;Lei,H.;Li,X.;Fan,J.;Zhang,W.;Apfel,U.;Cao,R.*; Adapting Synthetic Models of Heme/Cu Sites to Energy-Efficient Electrocatalytic Oxygen Reduction Reaction. Angew. Chem. Int. Ed., 2023, 62, e202312255. https://onlinelibrary.wiley.com/doi/10.1002/anie.202312255

160.Cang,C.;Zheng,H.*; Tandem electrocatalytic nitrate reduction reaction. Chin. J. Struct. Chem., 2023, 42, 100143. https://www.sciencedirect.com/science/article/abs/pii/S0254586123003392

159.Lv,H.;Zhang,X.;Guo,K.;Han,J.;Guo,H.;Lei,H.;Li,X.;Zhang,W.;Apfel,U.;Cao,R.*; Coordination Tuning of Metal Porphyrins for Improved Oxygen Evolution Reaction. Angew. Chem. Int. Ed., 2023, 62, e202305938. https://onlinelibrary.wiley.com/doi/10.1002/anie.202305938

158.Wang,T.;Yang,S.;Zheng,H.;Zhang,W.*;Cao,R.*; A layered CoSeO3 pre-catalyst for electrocatalytic water oxidation. Dalton Trans., 2023, 52, 15518-15523. https://pubs.rsc.org/en/content/articlelanding/2023/DT/D3DT01497E

157.Peng,X.;Han,J.;Li,X.;Liu,G.;Xu,Y.;Peng,Y.;Nie,S.;Li,W.;Li,X.;Chen,Z.;Peng,H.*;Cao,R.*;Fang,Y.; Electrocatalytic hydrogen evolution with a copper porphyrin bearing meso-(o-carborane) substituents. Chem. Commun., 2023, 59, 10777-10780. https://pubs.rsc.org/en/content/articlelanding/2023/CC/D3CC03104G

156.Gao,Y.;Mei,B.;Wu,Y.;Zhao,Q.;Bao,Z.;Qin,H.;Xu,Y.;Lv,H.;Peng,X.;He,Y.;Luo,T.;Yao,R.;Zhang,W.;Lei,H.*;Cao,R.*; A Cobalt(Ⅲ) Corrole with a Tethered Imidazole for Boosted Electrocatalytic Oxygen Reduction Reaction. Chin. J. Chem., 2023, 41, 2866-2872. https://onlinelibrary.wiley.com/doi/10.1002/cjoc.202300294

155.Liu,X.;Shi,M.;Tang,X.;Ma,Y.;Dang,J.;Yan,X.;Gu,Q.;Bao,Z.;Liang,Z.;Zhang,W.;Cao,R.;Zheng,H.*; Helical Anatase Titanium Nanotubes through a Protected Crystallization Strategy for Enhanced Photocatalytic Performance. Chem. Eur. J., 2023, 29, e202300464. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202300464

154.Gao,Y.;Lei,H.*;Guo,H.;Meng,J.;Zhang,Q.;Zhao,Q.;Li,J.;Zhou,Z.;Feng,W.;Zhang,W.;Cao,R.*; A cobalt corrole with a biologically relevant imidazolium pendant for boosted electrocatalytic oxygen reduction. J. Porphyrins Phthalocyanines, 2023, 27, 719-727. https://www.worldscientific.com/doi/10.1142/S1088424623500748

153.Xue,S.;Osterloh,W.;Lv,X.;Liu,N.;Gao,Y.;Lei,H.*;Fang,Y.;Sun,Z.;Mei,P.;Kuzuhara,D.;Aratani,N.;Yamada,H.;Cao,R.;Kadish,K.*;Qiu,F.*; Enhanced Four-Electron Oxygen Reduction Selectivity of Clamp-Shaped Cobalt(Ⅱ) Porphyrin(2.1.2.1) Complexes. Angew. Chem. Int. Ed., 2023, 62, e202218567. https://onlinelibrary.wiley.com/doi/10.1002/anie.202218567

152.Bao,Z.;Zhou,G.;Liu,X.;Peng,Y.;Huang,Z.*;Zheng,H.*; A bimetallic 3D interconnected metal–organic framework with 2D morphology and its derived electrocatalyst for oxygen reduction. CrystEngComm, 2023, 25, 1869-1873. https://pubs.rsc.org/en/content/articlelanding/2023/CE/D3CE00097D

151.Xue,S.*;Lv,X.;Liu,N.;Zhang,Q.;Lei,H.*;Cao,R.;Qiu,F.*; Electrocatalytic Hydrogen Evolution of Bent Bis(dipyrrin) Ni(Ⅱ) Complexes. Inorg. Chem., 2023, 62, 1679-1685. https://pubs.acs.org/doi/10.1021/acs.inorgchem.2c04097

150.Gao,Y.;Lei,H.*;Bao,Z.;Liu,X.;Qin,L.;Yin,Y.;Li,H.;Huang,S.;Zhang,W.;Cao,R.*; Electrocatalytic oxygen reduction with cobalt corroles bearing cationic substituents. Phys. Chem. Chem. Phys., 2023, 25, 4604-4610. https://pubs.rsc.org/en/content/articlelanding/2023/CP/D2CP05786G

149.Wang,N.;Zhang,X.;Han,J.;Lei,H.;Zhang,Q.;Zhang,H.*;Zhang,W.;Apfel,U.;Cao,R.*; Promoting hydrogen evolution reaction with a sulfonic proton relay. Chin. J. Catal., 2023, 45, 88-94. https://www.sciencedirect.com/science/article/pii/S1872206722641834

148.Zhang,H.;Wang,F.;Wang,Y.;Wei,H.;Zhang,W.;Cao,R.;Zheng,H.*; Two-dimensional hollow carbon skeleton decorated with ultrafine Co3O4 nanoparticles for enhanced lithium storage. J. Colloid Interface Sci., 2023, 631, 191-200. https://www.sciencedirect.com/science/article/pii/S0021979722019701

147.Yang,S.;Qin,L.;Zhang,W.*;Cao,R.*; The Mechanism of Water Oxidation from Mn-Based Heterogeneous Electrocatalysts. Chin. J. Struct. Chem., 2022, 41, 2204022-2204033. http://cjsc.ac.cn/cms/issues/60

146.Zheng,J.;Zhou,D.;Han,J.;Liu,J.;Cao,R.;Lei,H.*;Bian,H.*;Fang,Y.; Non-negligible Axial Ligand Effect on Electrocatalytic CO2 Reduction with Iron Porphyrin Complexes. J. Phys. Chem. Lett., 2022, 13, 11811-11817. https://pubs.acs.org/doi/10.1021/acs.jpclett.2c03235

145.Zhang,J.;Yang,L.;Yuan,W.;Yang,S.;Zhang,W.*;Cao,R.*; CoOx Supported on α-MoC for Efficient Electrocatalytic Oxygen Evolution Reaction. ChemElectroChem, 2022, 9, e20220096. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202200963

144.Han,J.;Wang,N.;Li,X.;Lei,H.;Wang,Y.;Guo,H.;Jin,X.;Zhang,Q.;Peng,X.;Zhang,X.*;Zhang,W.;Apfel,U.;Cao,R.*; Bioinspired iron porphyrins with appended poly-pyridine/amine units for boosted electrocatalytic CO2 reduction reaction. eScience, 2022, 2, 623-631. https://www.sciencedirect.com/science/article/pii/S2667141722000751

143.Yang,S.;Chen,D.;Cui,X.*;Zhang,J.*;Zhang,W.*;Cao,R.*; Spherical Ni/Ni3Se2 Heterostructure for Efficient Electrochemical Oxidation Reactions. ChemNanoMat, 2023, 9, e202200509. https://onlinelibrary.wiley.com/doi/10.1002/cnma.202200509

142.Yang,S.;Li,X.;Li,Y.;Wang,Y;Jin,X.;Qin,L;Zhang,W.*;Cao,R.*; Effect of Proton Transfer on Electrocatalytic Water Oxidation by Manganese Phosphates. Angew. Chem. Int. Ed., 2023, 62, e202215594. https://onlinelibrary.wiley.com/doi/10.1002/anie.202215594

141.Tang,J.;Liang,Z.;Qin,H.;Liu,X.;Zhai,B.;Su,Z.;Liu,Q.;Lei,H.;Liu,K.;Zhao,C*.;Cao,R.*;Fang,Y.*; Large-area Free-standing Metalloporphyrin-based Covalent Organic Framework Films by Liquid-air Interfacial Polymerization for Oxygen Electrocatalysis. Angew. Chem. Int. Ed., 2023, 62, e202214449. https://onlinelibrary.wiley.com/doi/10.1002/anie.202214449

140.Guo,H.;Liang,Z.;Guo,K.;Lei,H.;Wang,Y.;Zhang,W;Cao,R.*; Iron porphyrin with appended guanidyl group for significantly improved electrocatalytic carbon dioxide reduction activity and selectivity in aqueous solutions. Chin. J. Catal., 2022, 43, 3089-3094. https://www.sciencedirect.com/science/article/pii/S1872206721639578

139.Li,X.;Li,P.;Yang,J.;Xie,L.;Wang,N.;Lei,H.;Zhang,C.;Zhang,W.;Lee,Y.;Zhang,W.*;Fukuzumi,S.*;Nam,W.*;Cao,R.*; A cobalt(Ⅱ) porphyrin with a tethered imidazole for efficient oxygen reduction and evolution electrocatalysis. J. Energy Chem., 2022, 76, 617-621. https://www.sciencedirect.com/science/article/pii/S2095495622005447

138.Guo,H.;Wang,Y.;Guo,K.;Lei,H.;Liang,Z,*;Zhang,X.-P.*;Cao,R.*; A Co Porphyrin with Electron-Withdrawing and Hydrophilic Substituents for Improved Electrocatalytic Oxygen Reduction. J. Electrochem., 2022, 28, 2214002. https://jelectrochem.xmu.edu.cn/journal/vol28/iss9/7

137.Bao,Z.;Wang,Y.;Shi,M.;Wang,X.;Liang,Z.;Huang,Z.;Zhang,W.;Cao,R.;Zheng,H.*; A helical polypyrrole nanotube interwoven zeolitic imidazolate framework and its derivative as an oxygen electrocatalyst. Chem. Commun., 2022, 58, 11288-11291. https://pubs.rsc.org/en/Content/ArticleLanding/2022/CC/D2CC03835H

136.Wang,Y.;Zhang,X-P.;Lei,H.;Guo,K.;Xu,G.;Xie,L.;Li,X.;Zhang,W.;Apfel,U-P.;Cao,R.*; Tuning Electronic Structures of Covalent Co Porphyrin Polymers for Electrocatalytic CO2 Reduction in Aqueous Solutions. CCS Chem., 2022, 4, 2959–2967. https://www.chinesechemsoc.org/doi/10.31635/ccschem.022.202101706

135.Liu,T.;Zhang,Q.;Guo,H.;Liang,Z.;Cao,R.*; Electrocatalytic oxygen reduction reaction with metalloporphyrins. Sci. Sin.: Chim., 2022, 52, 1306-1320. https://www.sciengine.com/SSC/doi/10.1360/SSC-2022-0056

134.Guo,K.;Li,X.;Lei,H.;Guo,H.;Jin,X.;Zhang,X-P.*;Zhang,W.;Apfel,U-P.;Cao,R.*; Role-Specialized Division of Labor in CO2 Reduction with Doubly-Functionalized Iron Porphyrin Atropisomers. Angew. Chem. Int. Ed., 2022, 61, e202209602. https://onlinelibrary.wiley.com/doi/10.1002/anie.202209602

133.Yang,J.;Li,P.;Li,X.;Zhang,W.*;Cao,R.*;Fukuzumi,S.*;Nam,W.*; Crucial Roles of a Pendant Imidazole Ligand of a Cobalt Porphyrin Complex in the Stoichiometric and Catalytic Reduction of Dioxygen. Angew. Chem. Int. Ed., 2022, 61, e202208143. https://onlinelibrary.wiley.com/doi/10.1002/anie.202208143

132.Liang,Z.;Guo,H.;Lei,H.;Cao,R.*; Co porphyrin-based metal-organic framework for hydrogen evolution reaction and oxygen reduction reaction. Chinese Chem. Lett., 2022, 33, 3999-4002. https://www.sciencedirect.com/science/article/pii/S1001841721009888?via%3Dihub

131.Qi,J.;Chen,M.;Zhang,W.*;Cao,R.*; Ammonium cobalt phosphate with asymmetric coordination sites for enhanced electrocatalytic water oxidation. Chin. J. Catal., 2022, 43, 1955-1962. https://www.sciencedirect.com/science/article/pii/S1872206721640354

130.Lei,H.;Zhang,Q.;Liang,Z.;Guo,H.;Wang,Y.;Lv,H.;Li,X.;Zhang,W.;Apfel,U-P.;Cao,R.*; Metal-Corrole-Based Porous Organic Polymers for Electrocatalytic Oxygen Reduction and Evolution Reactions. Angew. Chem. Int. Ed., 2022, 61, e202201104. https://onlinelibrary.wiley.com/doi/full/10.1002/anie.202201104

129.Zhang,Q.;Lei,H.;Guo,H.;Wang,Y.;Gao,Y.;Zhang,W.;Cao,R.*; Through-Space Electrostatic Effects of Positively Charged Substituents on the Hydrogen Evolution Reaction. ChemSusChem, 2022, 15, e202200086. https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/cssc.202200086

128.Huo,M.;Sun,T.;Wang,Y.;Wang,B.;Zhang,W.;Cao,R.;Ma,Y.*;Zheng,H.*; A heteroepitaxially grown two-dimensional metal-organic framework and its derivative for the electrocatalytic oxygen reduction reaction. J. Mater. Chem. A, 2022, 10, 10408-10416. https://pubs.rsc.org/en/content/articlelanding/2022/ta/d2ta02313j

127.Wan,S.;Li,Y.;Xu,L.*;Zhang,W.*;Cao,R.*; Autologous Mn oxides as electrocatalysts to identify the origin of the water oxidation activity. Mater. Today Sustain., 2022, 17, 100106. https://www.sciencedirect.com/science/article/pii/S2589234721000476?via%3Dihub

126.Li,Y.;Wang,T.;Qin,L.;Yang,S.;Zhang,W.*;Cao,R.*; Cu, Fe Dual−modified Ni3S2 nanosheets on nickel foam for bifunctional electrocatalytic water spitting. FlatChem, 2022, 33, 100368. https://www.sciencedirect.com/science/article/pii/S2452262722000356?via%3Dihub

125.Wang,Y.;Sun,T.;Liang,Z.;Zhang,W.;Cao,R.;Siahrostami,S.*;Zheng,H.*; Two-Dimensional Metal-Organic Frameworks with Unique Oriented Layers for Oxygen Reduction Reaction: Tailoring the Activity through Exposed Crystal Facets. CCS Chem., 2022, 4, 1633-1642. https://www.chinesechemsoc.org/doi/10.31635/ccschem.022.202101666

124.Wang,H.-Y.*;Xie,W.-H.;Wei,D.-D.;Hu,R.;Wang,N.;Chang,K.;Lei,S.-L.;Wang,B.*;Cao,R.*; A Hybrid Assembly with Nickel Poly-Pyridine Polymer on CdS Quantum Dots for Photo-Reducing CO2 into Syngas with Controlled H2/CO Ratios. ChemSusChem, 2022, 15, e202200200. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.202200200

123.Zhang,W.;Cao,R.*; Water Oxidation with Polymeric Photocatalysts, Chem. Rev., 2022, 122, 5408–5410. https://pubs.acs.org/doi/10.1021/acs.chemrev.2c00175

122.Li,X.;Lei,H.;Xie,L.;Wang,N.;Zhang, W.; Cao.R.*; Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions. Acc. Chem. Res., 2022, 55, 878–892. https://pubs.acs.org/doi/10.1021/acs.accounts.1c00753

121.Gao,X.;Liu,X.;Yang,S.;Zhang,W.*;Lin,H.*;Cao.R.*; Black phosphorus incorporated cobalt oxide: Biomimetic channels for electrocatalytic water oxidation. Chin. J. Catal., 2022, 43, 1123-1130. https://www.sciencedirect.com/science/article/pii/S1872206721639372?via%3Dihub

120.Li,X.;Lv,B.;Zhang,X.;Jin,X.;Guo,K.;Zhou,D.;Bian,H.;Zhang,W.;Apfel,U-P.;Cao,R.*; Introducing Water-Network-Assisted Proton Transfer for Boosted Electrocatalytic Hydrogen Evolution with Cobalt Corrole. Angew. Chem. Int. Ed., 2022, 61, e202114310. https://onlinelibrary.wiley.com/doi/10.1002/anie.202114310

119.Wang.F.;Xu.Y.;Wang.Y.;Liang.Z.;Zhang.H.;Zhang.W.;Cao.R.;Zheng.H.*;Space-confined construction of two-dimensional nitrogen-doped carbon with encapsulated bimetallic nanoparticles as oxygen electrocatalysts,Chem. Commun., 2021, 57, 8190–8193.https://pubs.rsc.org/en/content/articlelanding/2021/CC/D1CC02591K

118.Wang.Y.;Bao.Z.;Shi.M.;Liang.Z.;Cao.R.;Zheng.H.*;The Role of Surface Curvature in Electrocatalysts,Chem.Eur.J.2022,28,e202102915.https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/chem.202102915

117.Liang.Z.;Yang.C.;Zhang.W.;Zheng.H.*;Cao.R.*;Anion engineering of hierarchical Co-A (A = O, Se, P) hexagrams for efficient electrocatalytic oxygen evolution reaction,Chinese Chem. Lett.,2021,32,3241–3244.https://www.sciencedirect.com/science/article/pii/S100184172100293X?via%3Dihub

116.Gao.X.;Yang.S.;Zhang.W.*;Cao.R.*; Biomimicking Hydrogen-Bonding Network by Ammoniated and Hydrated Manganese (Ⅱ) Phosphate for Electrocatalytic Water Oxidation. Acta Phys. -Chim. Sin., 2021, 37, 2007031. http://www.whxb.pku.edu.cn/EN/10.3866/PKU.WHXB202007031

115.Chen.Y.;Yang.S.;Liu.H.;Zhang.W.*;Cao.R.*; An unusual network of α-MnO2 nanowires with structure-­induced hydrophilicity and conductivity for improved electrocatalysis. Chin. J. Catal., 2021, 42, 1724–1731. https://www.sciencedirect.com/science/article/pii/S1872206721637932

114.Yang.S.;Wan.S.;Shang.F.;Chen.D.;Zhang.W.*;Cao.R.*; Autologous manganese phosphates with different Mn sites for electrocatalytic water oxidation. Chem. Commun., 2021, 57, 6165-6168. https://pubs.rsc.org/en/content/articlelanding/2021/CC/D1CC01004B

113.Zhang,Q.;Wang,Y.;Wang,Y.;Yang,S.;Wu,X.;Lv,B.;Wang,N.;Gao,Y.;Xu,X.;Lei,H.*;Cao.R.*;Electropolymerization of cobalt porphyrins and corroles for the oxygen evolution reaction,Chinese Chem Lett,2021,32,3807–3810.https://www.sciencedirect.com/science/article/pii/S1001841721002904?via%3Dihub

112.Jin,X.;Li,X.;Lei,H.;Guo,K.;Lv,B.;Chen,D.;Zhang,W.;Cao,R.*;Comparing electrocatalytic hydrogen and oxygen evolution activities of first-row transition metal complexes with similar coordination environments.J. Energ. Chem,2021,63,659-666.https://www.sciencedirect.com/science/article/pii/S2095495621005039?via%3Dihub

111.Hu,R.;Xie,W-H.;Wang,H-Y.*;Guo,X-A.;Zhang,X-P.*;Cao.R.*; Visible light-driven carbon-carbon reductive coupling of aromatic ketones activated by Ni-doped CdS quantum dots: An insight into the mechanism. Appl. Catal. B: Environ., 2022, 304, 120946. https://www.sciencedirect.com/science/article/pii/S0926337321010717

110.Wang,H-Y,*;Hu,R.;Wang,N.;Hu,G-L.;Wang,K.;Xie,W-H.;Cao,R.*; Boosting photoanodic activity for water splitting in carbon dots aqueous solution without any traditional supporting electrolyte. Appl. Catal. B: Environ., 2021, 296, 120378. https://www.sciencedirect.com/science/article/pii/S092633732100504X

109.Han,J.;Wang,N.;Li,X.*;Zhang,W.;Cao,R.*;Improving Electrocatalytic Oxygen Reduction Activity and Selectivity with a Cobalt Corrole Appended with Multiple Positively Charged Proton Relay Sites,J. Phys. Chem. C 2021, 125, 45, 24805–24813.https://pubs.acs.org/doi/10.1021/acs.jpcc.1c07578

108.Lv,H.;Guo,H.;Guo,K.;Lei,H.;Zhang,W.;Zheng,H.;Liang,Z.*;Cao,R.*; Substituent position effect of Co porphyrin on oxygen electrocatalysis. Chin. Chem. Lett., 2021, 32, 2841–2845. https://www.sciencedirect.com/science/article/pii/S1001841721000863?via%3Dihub

107.Li,X.;Zhang,X-P.;Guo,M.;Zhang,W.; Lee,Y-W.*; Nam,Wonwoo.*;Cao,R.*,Identifying Intermediates in Electrocatalytic Water Oxidation with a Manganese Corrole Complex.J. Am. Chem. Soc, 2021,143,14613–14621.https://pubs.acs.org/doi/10.1021/jacs.1c05204

106.Zhang,W.;Cao,R*, Switching the O–O bond-formation mechanism by controlling water activity. Chem, 2021, 7, 1981–1992. https://www.sciencedirect.com/science/article/abs/pii/S2451929421003685

105.Liang,Z.;Guo,H.;Zhou,G.;Guo,K.;Wang,B.;Lei,H.;Zhang,W.;Zheng,H.;Apfel Ulf-Peter.;Cao,R.*,Metal–Organic-Framework-Supported Molecular Electrocatalysis for the Oxygen Reduction Reaction.Angew. Chem. Int. Ed. 2021, 60, 8472 –8476.https://onlinelibrary.wiley.com/doi/10.1002/anie.202016024

104.Liang,Z.;Kong,N.;Yang,C.;Zhang,W.;Zheng,H.*;Lin,H.*;Cao,R.*;Highly Curved Nanostructure-Coated Co, N-Doped Carbon Materials for Oxygen Electrocatalysis.Angew. Chem. Int. Ed. 2021, 60, 12759 –12764.https://onlinelibrary.wiley.com/doi/10.1002/anie.202101562

103.Lv,B.;Li,X.;Zhang,W.;Apfel,Ulf-peter.;Cao,R.*,Controlling Oxygen Reduction Selectivity through Steric Effects: Electrocatalytic Two-Electron and Four-Electron Oxygen Reduction with Cobalt Porphyrin Atropisomers.Angew.Chem.Int.Ed.2021,60,12742 –12746.https://onlinelibrary.wiley.com/doi/10.1002/anie.202102523

102.Li,Y.;Wang,N.;Lei,H.*;Li,X.;Zheng,H.;Wang,H.;Zhang,W.;Cao,R.*; Bioinspired N4-metallomacrocycles for electrocatalytic oxygen reduction reaction. Coord. Chem. Rev., 2021, 442, 213996. https://www.sciencedirect.com/science/article/pii/S0010854521002708?via%3Dihub

101.Guo,K.;Lei,H.;Li,X.;Zhang,Z.;Wang,Y.;Guo.H.;Zhang,W.;Cao,R.*; Alkali metal cation effects on electrocatalytic CO2 reduction with iron porphyrins. Chin. J. Catal., 2021, 42, 1439–1444. https://www.sciencedirect.com/science/article/pii/S1872206720637627?via%3Dihub

100.Lei,H.;Zhang,Q.;Wang,Y.;Gao,Y.;Wang,Y.;Liang,Z.;Zhang,W.;Cao,R.*,Significantly boosted oxygen electrocatalysis with cooperation between cobalt and iron porphyrins.Dalton Trans., 2021, 50, 5120–5123.https://pubs.rsc.org/en/content/articlelanding/2021/DT/D1DT00441G

99.Zhang,X.;Wang,H.;Zheng,H.;Zhang,W.;Cao,R.*O–O bond formation mechanisms during the oxygen evolutionreaction over synthetic molecular catalysts. Chin. J. Catal., 2021, 42, 1253–1268. https://www.sciencedirect.com/science/article/pii/S1872206720636816

98.Xie,L.;Zhang,X.;Zhao,B.;Li,Ping.;Qi,J.;Guo,X.;Wang,B.;Lei,H.;Zhang,W.;Ulf-Peter Apfel;Cao,R.*; Enzyme-Inspired Iron Porphyrins for Improved Electrocatalytic. Angew. Chem. Int. Ed. 2021, 60, 7576 – 7581. https://onlinelibrary.wiley.com/doi/10.1002/anie.202015478

97.Zhang,X.;Anirban Chandra;Lee,Y.;Cao,R.*;Kallol Ray*;Wonwoo Nam*; Transition metal-mediated O–O bond formation. Chem. Soc. Rev., 2021, 50, 4804–4811. https://pubs.rsc.org/en/content/articlelanding/2021/CS/D0CS01456G

96.Liang,Z.;Wang,H.;Zheng,H.;Zhang,W.;Cao,R.*; Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chem. Soc. Rev., 2021, 50, 2540-2581. https://pubs.rsc.org/en/content/articlelanding/2021/CS/D0CS01482F

95.Wang,Y.;Wang,B.*;Yuan,H.;Liang,Z.;Huang,Z.;Zhou,Y.;Zhang,W.;Zheng,H.*;Cao,R.*; Inherent mass transfer engineering of a Co, N co-doped carbon material towards oxygen reduction reaction. J. Energy Chem., 2021, 58, 391–396. https://www.sciencedirect.com/science/article/pii/S209549562030718X

94.Chen,D.;Chen,Y.;Zhang,W.*;Cao,R.*; Nickel selenide from single-molecule electrodeposition for efficient electrocatalytic overall water splitting. New J. Chem., 2021, 45, 351-357. https://pubs.rsc.org/en/content/articlepdf/2021/nj/d0nj04966b

93. Qin, H.; Wang, Y.; Wang, B.*; Duan, X.; Lei, H.; Zhang, X.Zheng, H.Zhang, W.Cao, R.*; Cobalt porphyrins supported on carbon nanotubes as model catalysts of metal-N4/C sites for oxygen electrocatalysis. J. Energy Chem., 2021, 53, 77-81. https://www.sciencedirect.com/science/article/pii/S2095495620303375

92.Wang,Y.;Dr.Liang,Z.;Zheng,H.*;Cao,R.*,Recent Progress on Defect‐rich Transition Metal Oxides and Their Energy‐Related Applications.Chem Asian J. 2020, 15, 3717–3736.https://onlinelibrary.wiley.com/doi/abs/10.1002/asia.202000925

91.Shang,F.;Wan,S.;Dr.Gao,X.;Zhang,W.*;Cao,R.*,Engineering Hierarchical‐Dimensional Co(OH)F into CoP Superstructure for Electrocatalytic Water Splitting.ChemCatChem.2020, 12, 4770-4774.https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202000993

90.Zhou,G.;Wang,B.*;Cao,R.*,Acid Catalysis in Confined Channels of Metal−Organic Frameworks:Boosting Orthoformate Hydrolysis in Basic Solutions.J. Am. Chem. Soc. 2020, 142, 14848−14853.https://pubs.acs.org/doi/10.1021/jacs.0c07257

89.Xie,L.;Tian,J.;Ouyang,Y,;Guo,X.;Zhang,W.*;Ulf-Peter Apfel.;Zhang,W.;Cao,R.*; Water-Soluble Polymers with Appending Porphyrins as Bioinspired Catalysts for the Hydrogen Evolution Reaction. Angew. Chem. Int. Ed., 2020, 59, 15844 – 15848. https://onlinelibrary.wiley.com/doi/full/10.1002/anie.202003836

88.Liang,Z.;Zheng,H.*;Cao,R.*,Recent advances in Co-based electrocatalysts forRecent advances in Co-based electrocatalysts for the oxygen reduction reaction.Sustainable Energy & Fuels.2020, 4, 3848–3870.https://pubs.rsc.org/en/content/articlepdf/2020/se/d0se00271b

87.Meng,J.;Lei,H.;Li,X.;Zhang,W.;Cao,R.*; The Trans Axial Ligand Effect on Oxygen Reduction. Immobilization Method May Weaken Catalyst Design for Electrocatalytic Performance. J. Phys. Chem. C, 2020, 124, 30, 16324–16331. https://pubs.acs.org/doi/10.1021/acs.jpcc.0c05144

86. Zhang,C.;Yang,H.;Zhong,D.;Xu,Y.;Wang,Y.;Yuan,Q.;Liang,Z.;Wang,B.;Zhang,W.;Zheng,H.*;Cheng,T.*;Cao,R.*; A yolk-shell structured metal-organic framework with encapsulated iron-porphyrin and its derived bimetallic nitrogen-doped porous carbon for an efficient oxygen reduction reaction. J. Mater. Chem. A, 2020, 8, 9536-9544. https://pubs.rsc.org/en/content/articlelanding/2020/TA/D0TA00962H

85. Qi, J.; Lin, Y.; Chen, D.; Zhou, T.; Zhang, W.*; Cao, R.; Autologous cobalt phosphates with modulated coordination sites for electrocatalytic water oxidation. Angew. Chem. Int. Ed., 2020, 59, 8917-8921. https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202001737

84. Guo, X.; Wang, N.; Li, X.; Zhang, Z.; Zhao, J.; Ren, W.; Ding, S.; Xu, G.; Li, J.; Apfel, U.; Zhang, W.; Cao, R.*; Homolytic versus heterolytic hydrogen evolution reaction steered by a steric effect. Angew. Chem. Int. Ed., 2020, 59, 8941-8946. https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202002311

83.Lei,H.; Wang,Y.;Zhang,Q.;Cao,R.*; First-row transition metal porphyrins for electrocatalytic hydrogen evolution — a SPP/JPP Young Investigator Award paper. J. Porphyrins Phthalocyanines. 2020, 24, 1361–1371. https://www.worldscientific.com/doi/epdf/10.1142/S1088424620500157

82. Guo, K.; Li, X.; Lei, H.; Zhang, W.; Cao, R.*; Unexpected effect of intramolecular phenolic group on electrocatalytic CO2 reduction. ChemCatChem, 2020, 12, 1591-1595. https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cctc.201902034

81. Zhao, B.; Lei, H.; Wang, N.; Xu, G.; Zhang, W.; Cao, R.*; Underevaluated solvent effects in electrocatalytic CO2 reduction by FeIII chloride tetrakis(pentafluorophenyl)porphyrin. Chem. Eur. J., 2020, 26, 4007-4012. https://chemistry europe.onlinelibrary.wiley.com/doi/abs/10.1002/chem.201903064

80. Gao, X.; Chen, Y.; Sun, T.; Huang, J.; Zhang, W.*; Wang, Q.; Cao, R.*, Karst landform-featured monolithic electrode for water electrolysis in neutral media. Energy Environ. Sci. 2020, 13, 174-182. https://pubs.rsc.org/en/content/articlelanding/2020/EE/C9EE02380A#!divAbstract

79. Liu, Y.; Zhou, G.; Zhang, Z.; Lei, H.; Yao, Z.; Li, J.; Lin, J.; Cao, R.*, Significantly improved electrocatalytic oxygen reduction by an asymmetrical Pacman dinuclear cobalt(II) porphyrin–porphyrin dyad. Chem. Sci. 2020, 11, 87-96. https://pubs.rsc.org/en/content/articlelanding/2020/SC/C9SC05041H#!divAbstract

78. Xie, L.; Li, X.; Wang, B.; Meng, J.; Lei, H.; Zhang, W.; Cao, R.*Molecular engineering of a 3D self-supported electrode for oxygen electrocatalysis in neutral mediaAngew. Chem. Int. Ed. 2019, 58, 18883-18887. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201911441

77. Xu, Y.; Huang, Z.; Wang, B.; Liang, Z.; Zhang, C.; Wang, Y.; Zhang, W.; Zheng, H.*; Cao, R.*, A two-dimensional multi-shelled metal–organic framework and its derived bimetallic N-doped porous carbon for electrocatalytic oxygen reduction. Chem. Commun. 2019, 55, 14805-14808. https://pubs.rsc.org/en/content/articlelanding/2019/CC/C9CC08250F

76.Chen,D.;Gao,X.; Liu,H.;Zhang,W.*; Cao R.*,Nickel Selenide Derived from [Ni(en)3](SeO3) Complex for Efficient Electrocatalytic Overall Water Splitting.Journal.Electrochem.2019,25,553-561.http://electrochem.xmu.edu.cn/CN/10.13208/j.electrochem.181141

75. Gao, X.; Chen, D.; Qi, J.; Li, F.; Song, Y.; Zhang, W.*; Cao, R.*, NiFe oxalate nanomesh array with homogenous doping of Fe for electrocatalytic water oxidation. Small 2019, 15, 1904579. https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201904579

74. Qi, J.; Chen, M.; Zhang, W.*; Cao, R.*, Hierarchical-dimensional material: A Co(OH)2 superstructure with hybrid dimensions for enhanced water oxidation. ChemCatChem 2019, 11, 5969–5975. https://onlinelibrary.wiley.com/doi/abs/10.1002/cctc.201900697

73. Yuan, H.; Wang, Y.; Yang, C.; Liang, Z.; Chen, M.; Zhang, W.; Zheng, H.*; Cao, R.*Ultra-thin Co-Fe layered double hydroxide hollow nanocubes for efficient electrocatalytic water oxidation. ChemPhysChem 2019, 20, 2964-2967. https://onlinelibrary.wiley.com/doi/abs/10.1002/cphc.201900524

72. Huo, M.; Wang, B.; Zhang, C.; Ding, S.; Yuan, H.; Liang, Z.; Qi, J.; Chen, M.; Xu, Y.; Zhang, W.; Zheng, H.*; Cao, R.*2D metal–organic framework derived CuCo alloy nanoparticles encapsulated by nitrogen-doped carbonaceous nanoleaves for efficient bifunctional oxygen electrocatalyst and zinc–air batteriesChem. Eur. J. 2019, 25, 12780-12788. https://onlinelibrary.wiley.com/doi/abs/10.1002/chem.201902389

71. Xu, G.; Lei, H.; Zhou, G.; Zhang, C.; Xie, L.; Zhang, W.; Cao, R.*Boosting hydrogen evolution by using covalent frameworks of fluorinated cobalt porphyrins supported on carbon nanotubesChem. Commun. 2019, 55, 12647-12650. https://pubs.rsc.org/en/content/articlepdf/2019/cc/c9cc06916j

70. Qi, J.; Zhang, W.*Cao, R.*A new strategy for solar-to-hydrogen energy conversion: photothermal-promoted electrocatalytic water splitting. ChemElectroChem 2019, 6, 2762-2765. https://onlinelibrary.wiley.com/doi/abs/10.1002/celc.201900530

69. Liang, Z.; Zheng, H.*Cao, R.*Importance of electrocatalyst morphology for the oxygen reduction reaction. ChemElectroChem 2019, 6, 2600-2614. https://onlinelibrary.wiley.com/doi/abs/10.1002/celc.201801859

68. Huo, M.; Yang, Z.; Yang, C.; Gao, Z.; Qi, J.; Liang, Z.; Liu, K.; Chen, H.; Zheng, H.*Cao, R.*Hierarchical Zn-doped CoO nanoflowers for electrocatalytic oxygen evolution reaction. ChemCatChem 2019, 11, 1480-1486. https://onlinelibrary.wiley.com/doi/pdf/10.1002/cctc.201801908

67. Lei, H.; Li, X.; Meng, J.; Zheng, H.Zhang, W.Cao, R.*Structure effects of metal corroles on energy-related small molecule activation reactions. ACS Catal. 2019, 9, 4320-4344. https://pubs.acs.org/doi/pdf/10.1021/acscatal.9b00310?rand=mdx1i9og

66. Meng, J.; Lei, H.; Li, X.; Qi, J.; Zhang, W.Cao, R.*Attaching cobalt corroles onto carbon nanotubes: verification of four-electron oxygen reduction by mononuclear cobalt complexes with significantly improved efficiency. ACS Catal. 2019, 9, 4551-4560. https://pubs.acs.org/doi/10.1021/acscatal.9b00213

65. Liu, Y.; Han, Y.; Zhang, Z.; Zhang, W.; Lai, W.; Wang, Y.; Cao, R.*Low overpotential water oxidation at neutral pH catalyzed by a copper(II) porphyrin. Chem. Sci. 2019, 10, 2613-2622. https://pubs.rsc.org/en/content/articlepdf/2019/sc/c8sc04529a

64. Li, H.; Li, X.; Lei, H.; Zhou, G.; Zhang, W.; Cao, R.*Convenient immobilization of cobalt corroles on carbon nanotubes through covalent bonds for electrocatalytic hydrogen and oxygen evolution reactions. ChemSusChem 2019, 12, 801-806. https://onlinelibrary.wiley.com/doi/pdf/10.1002/cssc.201802765

63. Wang, N.; Lei, H.; Zhang, Z.; Li, J.; Zhang, W.; Cao, R.*Electrocatalytic hydrogen evolution with gallium hydride and ligand-centered reduction. Chem. Sci. 2019, 10, 2308-2314. https://pubs.rsc.org/en/content/articlepdf/2019/sc/c8sc05247f

62. Liang, Z.; Zhang, C.; Xu, Y.; Zhang, W.; Zheng, H.*; Cao, R.*Dual tuning of ultrathin α‑Co(OH)2 nanosheets by solvent engineering and coordination competition for efficient oxygen evolution. ACS Sustainable Chem. Eng. 2019, 7, 3527-3535.https://pubs.acs.org.ccindex.cn/doi/pdf/10.1021/acssuschemeng.8b05770

61. Liang, Z.; Yang, Z.; Duan, J.; Qi, J.; Yuan, H.; Gao, J.; Zhang, W.; Zheng, H.*; Cao, R.*Hollow bimetallic zinc cobalt phosphosulfides for efficient overall water splitting. Chem. Eur. J. 2019, 25, 621-626.https://onlinelibrary.wiley.com/doi/pdf/10.1002/chem.201804492

60. Liu, H.; Gao, X.; Yao, X.; Chen, M.; Zhou, G.; Qi, J.; Zhao, X.; Wang, W.*Zhang, W.*; Cao, R.*Manganese(II) phosphate nanosheet assembly with native out-of-plane Mn centres for electrocatalytic water oxidation. Chem. Sci. 2019, 10, 191-197. https://pubs.rsc.org/en/content/articlepdf/2019/sc/c8sc03764g

59. Wang, N.; Zheng, H.; Zhang, W.; Cao, R.*Mononuclear first‐row transition‐metal complexes as molecular catalysts for water oxidationChin. J. Catal. 2018, 39, 228-244. https://www.sciencedirect.com/science/article/pii/S1872206717630018

58. Gao, X.; Qi, J.; Wan, S.; Zhang, W.* Wang, Q.*; Cao, R.*Conductive molybdenum sulfide for efficient electrocatalytic hydrogen evolution. Small 2018, 14, 1803361. https://onlinelibrary.wiley.com/doi/pdf/10.1002/smll.201803361

57. Li, X.; Lei, H.; Liu, J.; Zhao, X.; Ding, S.; Zhang, Z.; Tao, X.; Zhang, W. Wang, W.; Zheng, X.*; Cao, R.*Carbon nanotubes with cobalt corroles for hydrogen and oxygen evolution in pH 0-14 solutions. Angew. Chem. Int. Ed. 2018, 57, 15070-15075. https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.201807996

56. Liang, Z.; Fan, X.; Lei, H.; Qi, J.; Li, Y.; Gao, J.; Huo, M.; Yuan, H.; Zhang, W. Lin, H.*; Zheng, H.*; Cao, R.*Cobalt–nitrogen-doped helical carbonaceous nanotubes as a class of efficient electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 2018, 57, 13187-13191. https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.201807854

55. Liang, Z.; Huang, Z.; Yuan, H.; Yang, Z.; Zhang, C.; Xu, Y.; Zhang, W. Zheng, H.*; Cao, R.*Quasi-single-crystalline CoO hexagrams with abundant defects for highly efficient electrocatalytic water oxidationChem. Sci. 2018, 9, 6961-6968. http://pubs.rsc.org/en/content/articlepdf/2018/sc/c8sc02294a

54. Liang, Z.; Zhang, C.; Yuan, H.; Zhang, W.;  Zheng, H.*; Cao, R.*, PVP-assisted transformation of a metal–organic framework into Co-embedded N-enriched meso/microporous carbon materials as bifunctional electrocatalysts. Chem. Commun. 2018, 54, 7519-7522. http://pubs.rsc.org/en/content/articlepdf/2018/cc/c8cc02646g

53. Lei, H.; Chen, M.; Liang, Z.; Liu, C.; Zhang, W.*; Cao, R.*, Ni2P hollow microspheres for electrocatalytic oxygen evolution and reduction reactions. Catal. Sci. Technol. 2018, 8, 2289-2293. http://pubs.rsc.org/en/content/articlepdf/2018/cy/c8cy00211h

52. Liang, Z.; Yang, Z.; Huang, Z.; Qi, J.; Chen, M.; Zhang, W.; Zheng, H.*; Sun, J.*; Cao, R.*; Novel insight into the epitaxial growth mechanism of six-fold symmetrical β-Co(OH)2/Co(OH)F hierarchical hexagrams and their water oxidation activity. Electrochim. Acta, 2018, 271, 526-536. https://www.sciencedirect.com/science/article/pii/S0013468618307126?via%3Dihub

51. Jia, X.; Yang, Z.; Wang, Y.; Chen, Y.; Yuan, H.; Chen, H.; Xu, X.; Gao, X.; Liang, Z.; Sun, Y.; Li, J.; Zheng, H.*; Cao, R.*, Hollow mesoporous silica@metal–organic framework and applications for pH-responsive drug delivery. ChemMedChem 2018, 13, 400-405.https://onlinelibrary.wiley.com/doi/abs/10.1002/cmdc.201800019

50. Qi, J.; Zhang, W.*; Cao, R.*, Porous materials as highly efficient electrocatalysts for the oxygen evolution reaction. ChemCatChem 2018, 10, 1206-1220.https://onlinelibrary.wiley.com/doi/abs/10.1002/cctc.201701637

49. Zhang, Z.; Xu, L.*; Cao, R.*, Structures and single crystal to single crystal transformations of cadmium frameworks using a flexible tripodal ligand. New J. Chem. 2018, 42, 5593--5601. http://pubs.rsc.org/en/content/articlepdf/2018/nj/c7nj05125e

48. Qi, J.; Zhang, W.*; Cao, R.*, Solar-to-hydrogen energy conversion based on water splitting.  Adv. Energy Mater. 2018, 8, 1701620.https://onlinelibrary.wiley.com/doi/epdf/10.1002/aenm.201701620

47. Guo, X.; Li, X.; Liu, X.; Li, P.; Yao, Z.; Li, J.; Zhang, W.; Zhang, J.; Xue, D.*Cao, R.*, Selective visible-light-driven oxygen reduction to hydrogen peroxide using BODIPY photosensitizers. Chem. Commun. 2018, 54, 845-848.http://pubs.rsc.org/en/content/articlepdf/2018/cc/c7cc09383g

46. Zhao, X.; Zhang, W.*; Cao, R.*, PVP-assisted synthesis of porous CoO prisms with enhanced electrocatalytic oxygen evolution properties. J. Energy Chem. 2017, 26, 1210-1216. https://www.sciencedirect.com/science/article/pii/S2095495617306228

45. Wu, Y.; Wang, L.; Chen, M.; Jin, Z.; Zhang, W.*; Cao, R.*, Preparation of cobalt-based electrodes by physical vapor deposition on various nonconductive substrates for electrocatalytic water oxidation. ChemSusChem 2017, 10, 4699-4703.https://onlinelibrary.wiley.com/doi/epdf/10.1002/cssc.201701576

44. Li, X.; Lei, H.; Guo, X.; Zhao, X.; Ding, S.; Gao, X.; Zhang, W.; Cao, R.*, Graphene-supported pyrene-modified cobalt corrole with axial triphenylphosphine for enhanced hydrogen evolution in pH 0-14 aqueous solutions. ChemSusChem 2017, 10, 4632-4641. (Special Issue)https://onlinelibrary.wiley.com/doi/epdf/10.1002/cssc.201701196

43. Chen, F.; Wang, N.; Lei, H.; Guo, D.; Liu, H.; Zhang, Z.; Zhang, W.; Lai, W.*; Cao, R.*, Electrocatalytic water oxidation by a water-soluble copper(II) complex with a copper-bound carbonate group acting as a potential proton shuttle. Inorg. Chem. 2017, 56, 13368-13375.https://pubs.acs.org/doi/pdf/10.1021/acs.inorgchem.7b02125

42. Chen, M.; Qi, J.; Guo, D.; Lei, H.; Zhang, W.*; Cao, R.*, Facile synthesis of sponge-like Ni3N/NC for electrocatalytic water oxidation. Chem. Commun. 2017, 53, 9566-9569.http://pubs.rsc.org/en/content/articlepdf/2017/cc/c7cc05172g

41. Qi, J.; Zhang, W.*; Cao, R.*, Aligned cobalt-based Co@CoOx nanostructures for efficient electrocatalytic water oxidation. Chem. Commun. 2017, 53, 9277-9280.http://pubs.rsc.org/en/content/articlepdf/2017/cc/c7cc04609j

40. Wan, S.; Qi, J.; Zhang, W.*; Wang, W.; Zhang, S.; Liu, K.; Zheng, H.; Sun, J.; Wang, S.; Cao, R.*, Hierarchical Co(OH)F superstructure built by low-dimensional substructures for electrocatalytic water oxidation. Adv. Mater. 2017, 29, 1700286.https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.201700286

39. Guo, D.; Chen, F.; Zhang, W.*Cao, R.*, Phase-transfer synthesis of α-Co(OH)2 and its conversion to CoO for electrocatalytic water oxidation. Sci. Bull. 2017, 62, 626-632.https://www.sciencedirect.com/science/article/pii/S2095927317301676?via%3Dihub

38. Sun, H.; Han, Y.; Lei, H.; Chen, M.; Cao, R.*, Cobalt corroles with phosphonic acid pendants as catalysts for oxygen and hydrogen evolution from neutral aqueous solution. Chem. Commun. 2017, 53, 6195-6198.http://pubs.rsc.org/en/content/articlepdf/2017/cc/c7cc02400b

37. Chen, M.; Qi, J.; Zhang, W.*Cao, R.*, Electrosynthesis of NiPx nanospheres for electrocatalytic hydrogen evolution from a neutral aqueous solution. Chem. Commun. 2017, 53, 5507-5510.http://pubs.rsc.org/en/content/articlepdf/2017/cc/c7cc01584d

36. Xu, L.; Lei, H.; Zhang, Z.; Yao, Z.; Li, J.; Yu, Z.; Cao, R.*, The effect of the trans axial ligand of cobalt corroles on water oxidation activity in neutral aqueous solutions. Phys. Chem. Chem. Phys. 2017, 19, 9755-9761.http://pubs.rsc.org/en/content/articlepdf/2017/cp/c6cp08495h

35. Zhang, S.; Zhang, Z.; Cao, R.*, Two-and three-dimensional silver acetylide frameworks with high-nuclearity silver cluster building blocks assembled using a bifunctional (4-ethynylphenyl)diphenyl phosphine ligand. Inorg. Chim. Acta 2017, 461, 57-63.https://ac.els-cdn.com/S0020169316306636/1-s2.0-S0020169316306636-main.pdf?_tid=43364d10-5bb3-4fd0-b379-eeb96e16dd09&acdnat=1550814410_fdbef35b62a17e7d5c2dabe17eb13f27

34. Liu, C.; Lei, H.; Zhang, Z.; Chen, F.; Cao, R.*, Oxygen reduction catalyzed by a water-soluble binuclear copper (II) complex from a neutral aqueous solution. Chem. Commun. 2017, 53, 3189-3192.http://pubs.rsc.org/en/content/articlepdf/2017/cc/c6cc09206c

33. Zhang, W.; Lai, W.; Cao, R.*, Energy-related small molecule activation reactions: oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems. Chem. Rev. 2017, 117, 3717-3797.https://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.6b00299

32. Guo, D.; Qi, J.; Zhang, W.*Cao, R.*, Surface electrochemical modification of a nickel substrate to prepare a NiFe-based electrode for water oxidation. ChemSusChem 2017, 10, 394-400.https://onlinelibrary.wiley.com/doi/epdf/10.1002/cssc.201601151

31. Zhang, W.; Wu, Y.; Qi, J.; Chen, M.; Cao, R.*, A thin NiFe hydroxide film formed by stepwise electrodeposition strategy with significantly improved catalytic water oxidation efficiency. Adv. Energy Mater. 2017, 7, 1602547.https://onlinelibrary.wiley.com/doi/epdf/10.1002/aenm.201602547

30. Gao, Z.; Qi, J.; Chen, M.; Zhang, W.*Cao, R.*, An electrodeposited NiSe for electrocatalytic hydrogen and oxygen evolution reactions in alkaline solutionElectrochim. Acta 2017, 224, 412-418.https://ac.els-cdn.com/S0013468616326160/1-s2.0-S0013468616326160-main.pdf?_tid=d1f7434f-8561-4081-8b77 8e6fbfb2db18&acdnat=1526535859_59bf8f5d800777bb27fe2801daf3417a

29. Zhang, Z.; Zheng, K.; Xia, T.; Xu, L.; Cao, R.*, Niversus Ni30: A truncated octahedron metal-organic cage constructed with [Ni5(CN)4]6+ squares and tripodal tris-tacn ligands that are large and flexible. Chem. Eur. J. 2016, 22, 17576-17580.https://onlinelibrary.wiley.com/doi/epdf/10.1002/chem.201604598

28. Zheng, H.; Gao, F.*; Valtchev, V., Nanosized inorganic porous materials: fabrication, modification and application. J. Mater. Chem. A 2016, 4, 16756-16770.http://pubs.rsc.org/en/content/articlepdf/2016/ta/c6ta04684c

27. Han, Y.; Fang, H.; Jing, H.; Sun, H.; Lei, H.; Lai, W.*; Cao, R.*, Singly versus doubly reduced nickel porphyrins for proton reduction: experimental and theoretical evidence for a homolytic hydrogen-evolution reaction. Angew. Chem. Int. Ed. 2016, 55, 5457-5462.https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.201510001

26. Zhang, W.*; Qi, J.; Liu, K.; Cao, R.*, A nickel-based integrated electrode from an autologous growth strategy for highly efficient water oxidation. Adv. Energy Mater. 2016, 6, 1502489.https://onlinelibrary.wiley.com/doi/epdf/10.1002/aenm.201502489

25. Xiang, R.; Wang, H.*;  Xin, Z.; Lu, Y.; Li, C.; Sun, H.; Gao, X.; Cao, R.*, A water-soluble copper-polypyridine complex as a catalyst for both photo-induced and electrocatalytic oxygen evolution. Chem. Eur. J. 2016, 5, 1602-1607.https://onlinelibrary.wiley.com/doi/epdf/10.1002/chem.201504066

24. Zhang, R.; Zhao, C.; Li, X.; Zhang, Z.; Ai, X.; Chen, H.*; Cao, R.*, A homoleptic, all-alkynyl-stabilized highly luminescent Au8Ag8 cluster with a single crystal X-ray structure. Dalton Trans. 2016, 45, 12772-12778.http://pubs.rsc.org/en/content/articlepdf/2016/dt/c6dt02187e

23. Lei, H.; Liu, C.; Wang, Z.; Zhang, Z.; Zhang, M.; Chang, X.; Zhang, W.Cao, R.*, Noncovalent immobilization of a pyrene-modified cobalt corrole on carbon supports for enhanced electrocatalytic oxygen reduction and oxygen evolution in aqueous solutions. ACS Catal. 2016, 6, 6429-6437.https://pubs.acs.org/doi/pdf/10.1021/acscatal.6b01579

22. Zheng, H.*; Zhang,Y.; Liu, L.; Wan, W.; Guo, P.; Nyström, A.*; Zou, X.*, One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc. 2016, 138, 962-968.https://pubs.acs.org/doi/pdf/10.1021/jacs.5b11720

21. Verho, O.*; Zheng, H. (Equal contribution); Gustafson, K.; Nagendiran, A.; Zou, X.*, Bäckvall, J.*, Application of Pd nanoparticles supported on mesoporous hollow silica nanospheres for the efficient and selective semihydrogenation of alkynes. ChemCatChem 2016, 8, 773-778.https://onlinelibrary.wiley.com/doi/pdf/10.1002/cctc.201501112

20. Wu, Y.; Chen, M.; Han, Y.; Luo, H.; Su, X.; Zhang, M. T.; Lin, X.; Sun, J.; Wang, L.; Deng, L.; Zhang ,W.Cao, R.*, Fast and simple preparation of iron-based thin films as highly efficient water-oxidation catalysts in neutral aqueous solution. Angew. Chem. Int. Ed. 2015, 54, 4870-4875.https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.201412389

19. Tang, F.; Cao, R.*; Gong, H.-Y.*, Aromatic plane effect study in pseudorotaxane construction between ‘Texas-sized’ molecular box and carboxylate anions. Tetrahedron Lett. 2015, 56, 820-823.https://ac.els-cdn.com/S0040403914021893/1-s2.0-S0040403914021893-main.pdf?_tid=5b6913ca-c1c1-4c45-a511-3100b7a66adc&acdnat=1526537481_ae1f2df97acb63e5e6e08162fe027688

18. Gong, H. Y.*; Tang, F.; Rambo, B. M.; Cao, R.*; Xiang, J. F.*; Sessler, J. L.*, Aromatic sulfonate anion-induced pseudorotaxanes: environmentally benign synthesis, selectivity, and structural characterization. Chem. Commun. 2015, 51, 1795-1798.http://pubs.rsc.org/en/content/articlepdf/2015/cc/c4cc08284b

17. Liu, X.; Yi, Q.; Han, Y.; Liang, Z.; Shen, C.; Zhou, Z.; Sun, J. L.; Li, Y.; Du, W.*; Cao, R.*, A robust microfluidic device for the synthesis and crystal growth of organometallic polymers with highly organized structures. Angew. Chem. Int. Ed. 2015, 54, 1846-1850.https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.201411008

16. Zhang, Z.; Yang, Y.; Sun, H.; Cao, R.*, Syntheses, structures and anion exchange properties of accommodative silver chains using a positively charged and flexible ligand. Inorg. Chim. Acta 2015, 434, 158-171.https://ac.els-cdn.com/S0020169315002832/1-s2.0-S0020169315002832-main.pdf?_tid=611d61be-cc8f-4de6-9ee3-3429ee766c39&acdnat=1526537760_93dfcef341bd3c447c9b660604de79a1

15. Han, Y.; Wu, Y.; Lai, W.*; Cao, R.*, Electrocatalytic water oxidation by a water-soluble nickel porphyrin complex at neutral pH with low overpotential. Inorg. Chem. 2015, 54, 5604-5613.https://pubs.acs.org/doi/pdf/10.1021/acs.inorgchem.5b00924

14. Wang, Z.; Lei, H.; Cao, R.*; Zhang, M.*, Cobalt corrole on carbon nanotube as a synergistic catalyst for oxygen reduction reaction in acid media. Electrochim. Acta 2015, 171, 81-88.https://ac.els-cdn.com/S0013468615011159/1-s2.0-S0013468615011159-main.pdf?_tid=289cea46-3dee-4d4e-b066-ce6475ee2217&acdnat=1526537897_bafabdaa16baa42c6d77c2778f354c47

13. Zhang, R.; Hao, X.; Li, X.; Zhou, Z.; Sun, J.; Cao, R.*, Soluble silver acetylide for the construction and structural conversion of all-alkynyl-stabilized high-nuclearity homoleptic silver clusters. Cryst. Growth Des. 2015, 15, 2505-2513.https://pubs.acs.org/doi/pdf/10.1021/acs.cgd.5b00286

12. Ning, Y.; Gao, M.; Zheng, K.; Zhang, Z.; Zhou, J.; Hao, X.; Cao, R.*, Phosphate monoester hydrolysis at tricopper site: The advantage and disadvantage of closely assembled trimetallic active sites. J. Mol. Catal. A: Chem. 2015, 403, 43-51.https://ac.els-cdn.com/S1381116915001235/1-s2.0-S1381116915001235-main.pdf?_tid=19e61dd8-9a28-4606-9f9a-4077ea1b6ae3&acdnat=1527833885_0b7123cb2937ebb8fbef8db3892e4215

11. Zheng, H.*; Tai, C.; Su, J.; Zou, X.; Gao, F.*, Ultra-small mesoporous silica nanoparticles as efficient carriers for pH responsive releases of anti-cancer drugs. Dalton Trans. 2015, 44, 20186-20192.http://pubs.rsc.org/en/content/articlepdf/2015/dt/c5dt03700j

10. Lei, H.; Fang, H.; Han, Y.; Lai, W.*; Fu, X.*; Cao, R.*, Reactivity and mechanism studies of hydrogen evolution catalyzed by copper corroles. ACS Catal. 2015, 5, 5145-5153.https://pubs.acs.org/doi/pdf/10.1021/acscatal.5b00666

9. Chen, M.; Wu, Y.; Han, Y.; Lin, X.; Sun, J.; Zhang, W.*Cao, R.*, An iron-based film for highly efficient electrocatalytic oxygen evolution from neutral aqueous solution. ACS Appl. Mater. Interfaces 2015, 7, 21852-21859.https://pubs.acs.org/doi/pdf/10.1021/acsami.5b06195

8. Qi, J.; Zhang, W.*; Xiang, R.; Liu, K.; Wang, H.; Chen, M.; Han, Y.; Cao, R.*, Porous nickel-iron oxide as highly efficient electrocatalyst for oxygen evolution reaction. Adv. Sci. 2015, 2, 1500199.https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.201500199

7. Lei, H.; Han, A.; Li, F.; Zhang, M.; Han, Y.; Du, P.*; Lai, W.*Cao, R.*, Electrochemical, spectroscopic and theoretical studies of a simple bifunctional cobalt corrole catalyst for oxygen evolution and hydrogen production. Phys. Chem. Chem. Phys. 2014, 16, 1883-1893.http://pubs.rsc.org/en/content/articlepdf/2014/cp/c3cp54361g

6. Zhang, R.; Liang, Z.; Han, A.; Wu, H.; Du, P.*; Lai, W.*Cao, R.*, Structural, spectroscopic and theoretical studies of a vapochromic platinum(II) terpyridyl complex. CrystEngComm 2014, 16, 5531-5542.http://pubs.rsc.org/en/content/articlepdf/2014/ce/c4ce00514g

5. Han, A.; Du, P.*; Sun, Z.; Wu, H.; Jia, H.; Zhang, R.; Liang, Z.; Cao, R.*; Eisenberg, R.*, Reversible mechanochromic luminescence at room temperature in cationic platinum(II) terpyridyl complexes. Inorg. Chem. 2014, 53, 3338-3344.https://pubs.acs.org/doi/pdf/10.1021/ic402624u

4. Han, A.; Jia, H.; Ma, H.; Ye, S.; Wu, H.; Lei, H.; Han, Y.; Cao, R.*; Du, P.*, Cobalt porphyrin electrode films for electrocatalytic water oxidation. Phys. Chem. Chem. Phys. 2014, 16, 11224-11232.http://pubs.rsc.org/en/content/articlepdf/2014/cp/c4cp00523f

3. Liu, X.; Du, P.*Cao, R.*, Trinuclear zinc complexes for biologically relevant μ3-oxoanion binding and carbon dioxide fixation. Nat. Commun. 2013, 4, 2375. https://www.nature.com/articles/ncomms3375.pdf

2. Lai, W.*Cao, R.*; Dong, G.; Shaik, S.; Yao, J.; Chen, H.*, Why is cobalt the best transition metal in transition-metal hangman corroles for O-O bond formation during water oxidation? J. Phys. Chem. Lett. 2012, 3, 2315-2319.https://pubs.acs.org/doi/pdf/10.1021/jz3008535

1. Cao, R.*; Lai, W.; Du, P.*, Catalytic water oxidation at single metal sites. Energy Environ. Sci. 2012, 5, 8134-8157.http://pubs.rsc.org/en/content/articlepdf/2012/ee/c2ee21494f?page=search