[35] Wang, R., Zhang, Y., Sun, K., Qian, C. and Bao, W.* . Emerging Green Technologies for Recovery and Reuse of Spent Lithium-ion Batteries-A Review. Journal of Materials Chemistry A. 2022, accepted 恭喜镕浩
[34] Wang, R., Li, M., Sun, K., Zhang, Y., Li, J., Bao, W.*. Element‐Doped MXenes: Mechanism, Synthesis, and Applications. Small, 2022, 2201740, accepted 恭喜镕浩
[33] Wang, R., Li, M., Zhang, Y., Sun, K., Bao, W.* Atomic surface modification strategy of MXene materials for high‐performance metal sulfur batteries. International Journal of Energy Research. 2022, 46 (9) Pages 11659-11675 恭喜镕浩
[32] Wang, R., Sun, K., Zhang, Y., Li, B., Qian, C., Li, J.*, Liu, F. Bao, W.* . Nanoscale interface engineering of inorganic Solid-State electrolytes for High-Performance alkali metal batteries. Journal of Colloid and Interface Science, 2022 621, pp.41-66. 恭喜镕浩
[31] Wang, R., Liu, H., Zhang, Y., Sun, K., Bao, W.* Integrated Photovoltaic Charging and Energy Storage Systems: Mechanism, Optimization, and Future. Small, 2022 , 2203014. accepted 恭喜镕浩
[30] Wang, R., Sun, K., Liu, H., Qian, C., Li, M., Zhang, Y., Bao, W.* . Integrating a redox-coupled FeSe 2/N-C photoelectrode into potassium ion hybrid capacitors for photoassisted charging. J. Mater. Chem. A, 2022. accepted 恭喜镕浩
[29] Yu, F., Wang, Y., Guo, C., Liu, H., Bao, W., Li, J., Zhang, P. and Wang, F. Spinel LiMn2O4 Cathode Materials in Wide Voltage Window: Single-Crystalline versus Polycrystalline. Crystals, 2022, 12(3), p.317. 恭喜于老师
[28] Qian C.;Sun K.; Bao, W.* Recent Advance on Machine Learning of MXenes for Energy Storage and Conversion. International Journal of Energy Research, 2022. SCI一区,恭喜诚飞
[27] Li, J.;* Liu, H.; Wang R.; Qian C.; Bao, W.* Dual-Functional Iodine Photoelectrode Enabling High Performance Photo-assistant Rechargeable Lithium Iodine Batteries. J. Mater. Chem. A, 2022.10(13), 7326-7332. 恭喜红敏、李老师
[26] Wang R.; Zhang Y.; Qian C.; Bao, W.* Dimensional optimization enable high-performance capacitive deionization. J. Mater. Chem. A, 2022 10(12), 6414-6441. 恭喜镕浩
[25] Bao, W.; Wang R.; Qian C.; Li, J.,* Liu, F.* Wang, G*.; Porous heteroatom-doped MXene microspheres enable strong adsorption and encapsulation of sodium polysulfides for long-life room-temperature Na-S Batteries ACS nano 2021, 15 (10), 16207-16217. 感谢李老师 芳洋师兄 汪老师
[24] Bao, W.;* Wang R.; Qian C.; J. Li,;* Liu, F. Y.* Stable alkali metal anodes enabled by crystallographic optimization-A review J. Mater. Chem. A, 2021 ,9, 20957-20984. 感谢李老师 芳洋师兄
[23] Li, J., Niu, Z., Guo, C., Li, M., & Bao, W. Catalyzing the polysulfide conversion for promoting lithium sulfur battery performances: A review. Journal of Energy Chemistry, 2021, 54, 434-451.感谢李老师、志豪
[22] Bao, W.; Shuck, C. E.; Zhang, W.; Guo, X.; Gogotsi, Y.; Wang, G., Boosting Performance of Na–S Batteries Using Sulfur-Doped Ti3C2Tx MXene Nanosheets with a Strong Affinity to Sodium Polysulfides. ACS nano 2019, 13, 11500-11509.
[21] Xiao, X.,# Wang, H.,# Bao, W.,# Urbankowski, P., Yang, L., Yang, Y., Maleski, K., Cui, L., Billinge, S.J., Wang, G. and Gogotsi, Y., Two‐Dimensional Arrays of Transition Metal Nitride Nanocrystals. Advanced Materials 2019: 31(33)190239.
[20] Yang, J., # Bao, W., # Jaumaux, P., Zhang, S., Wang, C., & Wang, G. (2019). MXene‐based composites: synthesis and applications in rechargeable batteries and supercapacitors. Advanced Materials Interfaces, 2019, 6(8), 1802004.
[18] Bao, W., Tang, X., Guo, X., Choi, S., Wang, C., Gogotsi, Y. and Wang, G., Porous cryo-dried MXene for efficient capacitive deionization. Joule 2018 2(4), pp.778-787. 封面论文,高被引论文.
[17] Bao, W.; Liu, L., Wang, C., Choi, S., Wang, D. and Wang, G., Facile Synthesis of Crumpled Nitrogen‐Doped MXene Nanosheets as a New Sulfur Host for Lithium–Sulfur Batteries. Advanced Energy Materials 2018, 8(13), 1702485. 封面论文,高被引论文.
[16] Bao, W.; Su, D.; Zhang, W.; Guo, X.; Wang, G. 3D Metal Carbide@Mesoporous Carbon Hybrid Architecture as a New Polysulfide Reservoir for Lithium–Sulfur Batteries. Advanced Functional Materials 2016, 26(47), 8746-8756. 高被引论文.
[13] Bao, W.; X, Xie.; Xu, J.; Guo, X.; J, Song Su, D.; Wang, G. Confine sulfur in 3D flexible hybrid MXene/reduced graphene oxide nanosheets for lithium sulfur battery. Chemistry–A European Journal 2017, 23, 1-8.
[12] Bao, W.; Mondal, A. K.; Xu, J.; Wang, C.; Su, D.; Wang, G. 3D hybrid–porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors. Journal of Power Sources 2016, 325, 286-291.
[14] Bao, W.; Zhang, Z.; Zhou, C.; Lai, Y.; Li, J. Multi–walled carbon nanotubes @ mesoporous carbon hybrid nanocomposites from carbonized multi–walled carbon nanotubes@metal–organic framework for lithium sulfur battery. Journal of Power Sources 2014, 248, 570-576.
[13] Bao, W.; Zhang, Z.; Chen, W.; Zhou, C.; Lai, Y.; Li, J. Facile synthesis of graphene oxide@mesoporous carbon hybrid nanocomposites for lithium sulfur battery. Electrochimica Acta 2014, 127, 342-348.
[12] Bao, W.; Zhang, Z.;Qu, Y.;Zhou, C.;Wang, X.; Li, J. Confine sulfur in mesoporous metal–organic framework@reduced graphene oxide for lithium sulfur battery. Journal of Alloys and Compounds 2014, 582, 334-340.
[11] Bao, W.; Zhang, Z.; Qu, Y.; Zhou, C.; Wang, X.; Li, J. Enhanced cyclability of sulfur cathodes in lithium–sulfur batteries with Na-alginate as a binder. Journal of Energy Chemistry 2013, 22(5), 790-794.
[10] Li, H.; Jin, T.; Chen, X.; Lai, Y.; Zhang, Z., Bao, W.; Jiao, L., Rational Architecture Design Enables Superior Na Storage in Greener NASICON‐Na4MnV (PO4)3 Cathode. Advanced Energy Materials 2018, 8(24), p.1801418.
[9] Li, H., Zhang, Z., Xu, M., Bao, W., Lai, Y., Zhang, K. and Li, J., 2018. Triclinic Off-Stoichiometric Na3.12Mn2. 44 (P2O7) 2/C Cathode Materials for High-Energy/Power Sodium-Ion Batteries. ACS applied materials & interfaces 2018, 10(29), pp.24564-24572.
[8]Li, H., Chen, X., Jin, T., Bao, W.;Zhang, Z. and Jiao, L., Robust graphene layer modified Na2MnP2O7 as a durable high-rate and high energy cathode for Na-ion batteries. Energy Storage Materials 2019, 16, pp.383-390.
[7] Shanmukaraj, D., Kretschmer, K., Sahu, T., Bao, W., Rojo, T., Wang, G., & Armand, M. (2018). Highly efficient, cost effective, and safe sodiation agent for high‐performance sodium‐ion batteries. ChemSusChem, 2018, 11(18), 3286-3291.
[6] Guo, X., Li, K., Bao, W., Zhao, Y., Xu, J., Liu, H. and Wang, G., Highly Reversible Lithium Polysulfide Semiliquid Battery with Nitrogen‐Rich Carbon Fiber Electrodes. Energy Technology 2018, 6(2), pp.251-256.
[5] Xu, J.; Su, D.;Zhang, W.; Bao, W.; Wang, G. A nitrogen–sulfur co-doped porous graphene matrix as a sulfur immobilizer for high performance lithium–sulfur batteries. J. Mater. Chem. A, 2016, 4, 17381-17393.
[4] Song, J.; Su D, Xie X, Su, D.; Guo, X.; Bao, W.; Wang. Immobilizing Polysulfides with MXene-Functionalized Separators for Stable Lithium–Sulfur Batteries. ACS applied materials & interfaces 2016, 8(43): 29427-29433.
[3] Xu, J.; Su, D.; Bao, W.; Wang, G. Rose flower–like NiCo2O4 with hierarchically porous structures for highly reversible lithium storage. Journal of Alloys and Compounds 2016, 684: 691-698.
[2] Chen, W.;Zhang, Z.; Bao, W.; Lai, Y.;Li, J.;Gan, Y.; Wang, J. Hierarchical mesoporous γ–Fe2O3/carbon nanocomposites derived from metal organic frameworks as a cathode electrocatalyst for rechargeable Li–O2 batteries. Electrochimica Acta 2014, 134, 293-301
[1] Zhang, Z.; Bao, W.; Chen, W.;Zhou, C.;Lai, Y.; Li. Water-soluble polyacrylic acid as a binder for sulfur cathode in lithium–sulfur battery. ECS Electrochemistry Letters, 2012, 1(2), pp.A34-A37. (本人学生第一作者)
★★★★★