23267
当前位置: 首页   >  成果及论文
成果及论文

2024

191. Q. Pu, Y. Yao, L. Wang, D. Fan, Y. Yao, Y. Guo*, Z. Sun, Y. Li, Z. Ke*. Green Chem. (2024). Under review.

190. Heterogeneous catalysis for the environment; J. Liu,* R. Burciaga, S. Tang, S. Ding, H. Ran, W. Zhao, G. Wang, Z. Zhuang, L. Xie, Z. Lyu, Y. Lin, A. Du, A. Yuan, J. Fu, B. Song, J. Zhu, Z. Sun, X. Jin, Z. Huo, B. Shen, M. Shen, J. Li, Y. Cao, Y. Zhou, Y. Jiang, D. Zhu, M. Sun, X. Wu, C. Qin, Z. Jiang, O. Metin, C. J. Thambiliyagodage, J.-J. Lv, Q, Li, H. Wu, Z. Wu, J. C-H. Lam, G. Gao, C. Li, M. Luo, Y. Jing, X. Wang, J. Li, M. Liu, R. Lin, H. Ren, B. X. Han, Y. Jing* and W. Zhu.* The Innov. Mater. 2(3): 100090 (2024)https://doi.org/10.59717/j.xinn-mater.2024.100090.

189. Charged sorbents for efficient CO2 removalX. Fan, X. Sun, A. W. Robertson and Z. Sun.* The Innov. Mater. 2(3): 100088 (2024). https://doi.org/10.59717/j.xinn-mater.2024.100088. (Selected as cover page topic)

188. High-stability redox flow batteryJ. H. Yang,  A. W. Robertson, A. Tang* and Z. Sun*, et al. (2024). To be submitted. 

187. High-stable all-iron redox flow battery with innovative anolyte based on steric hindrance regulation; J. H. Yang, W. Wei, C. Zhou, H. Yan, H. Che, L. Hao, X. Tan,* A. W. Robertson, T.-S. Wu, Y.-L. Soo, A. Tang* and Z. Sun.* Angew. Chem. Int. Ed. e202414452 (2024). 

186. Electrochemical N2 reduction to NH3; S. Taimoor, L. D. Hao, L. Xu, X. F. Zhang,* M. Xu* and Z. Sun.* (2024). To be submitted.

185. A universal strategy for fabrication of dual atom materials for multifunctional electrocatalysisL. Hao, F. Gao, A. W. Robertson and Z. Sun.* The Innov. Mater. 2(1), 100050 (2024). https://doi.org/10.59717/j.xinn-mater.2024.100050.

184. Emerging two-dimensional materials: synthesis, physical properties, and application for catalysis in energy conversion and storageL. Xu#,  R. Iqbal#, Y. Wang#, S. Taimoor, L. Hao, R. Dong,* K. Liu,* J. Texter* and Z. Sun.* The Innov. Mater. 2(1), 100060 (2024). https://doi.org/10.59717/j.xinn-mater.2024.100060. (Selected as cover topic)

183. Coupled metal atomic pairs for syngergistic electrocatalytic CO2 reductionX. Zhan#, X. Fan#, W. Li, X. Tan,* A. W. Robertson,* U. Muhammad and Z. Sun.* Matter (2024). In press.

182. A universal synthesis of single-atom catalysts via operando bond formation driven by electricityX. Zhan,# L. Zhang,# J. Choi, X. Tan,* S. Hong, T.-S. Wu, P. Xiong, Y.-L. Soo, L. Hao, M. M.-J. Li, L. Xu, A. W. Robertson, Y. Jung,* X. Sun* and Z. Sun.* Adv. Sci. 2401814 (2024). 

181. Electrochemical CO2 reduction; X. Li,# W. Kang,# X. Fan, X. Tan,* J. Masa,* A. W. Robertson, Y. Jung,* B. X. Han, J. Texter and Z. Sun.* The Innov. (2024). Under revision.

180. Coupled Cu doping and Z-scheme heterojunction for synergistically enhanced tetracycline photodegradation; H. Shen, C. Yang, S. Hong, L. Hao, L. Xu, A. W. Robertson and Z. Sun.* Nano Res. 7, 5937-5948 (2024). https://doi.org/10.1007/s12274-024-6614-5.

179. Z-scheme S-modified Zn0.2Cd0.8S/α-Fe2O3 heterostructure for enhanced photoelectrochemical water oxidation; L. Shuai, F. Chen, H. Chai, L. Tian, J. Dou,* X. Huang, J. Yu, S. Taimoor, Z. Sun* and X. Chen.* Mater. Res. Bull. 177, 112848 (2024). https://doi.org/10.1016/j.materresbull.2024.112848.

178. Bismuth nanoparticles anchored on N-doped graphite felt for stable and efficient iron-chromium redox flow batteriesH. Che, F. Gao, J. Yang, S. Hong,* L. Hao, L. Xu, S. Taimoor, A. W. Robertson and Z. Sun.* New Carbon Mater. 39(1), 131141 (2024). DOI10.1016/S1872-5805(24)60837-1 (Selected as Cover Page).

177. Highly corrdinated Ni-N5 sites for efficient electrochemical CO2 reduction toward CO with faradaic efficiency exceeding 99%F. Zhang,* J. Li, Y. Chen, H. Zhang, J. Li, P. Liu, Y. Mu, W.-Y. Zan* and Z. Sun.* J. Catal. 433, 115495 (2024). https://doi.org/10.1016/j.jcat.2024.115495.

176. Hydrogen radical-boosted electrocatalytic CO2 reduction using Ni-partnered heteroatomic pairsZ. Yao,# H. Cheng,# Y. Xu,# X. Zhan1, S. Hong1, X. Tan,* T.-S. Wu, P. Xiong, Y.-L. Soo, M. M.-J. Li, L. Hao, L. Xu, A. W. Robertson, B. Xu, M. Yang* and Z. Sun.* Nat. Commun. 2024. Accepted.

175. 铁铬液流电池电极材料研究进展J. Yang, Z. Cao, H. Che, Y. Zhang, L. Hao and  Z. Sun.* 当代化工(2024). Accepted.

174. Emerging green catalytic synthesis of biomolecules from CO2 and/or nitrogenous small moleculesL. Xu, X. Tan*, Z.-H. He, L. Hao, Z.-T. Liu,  W. Wang, A. W. Robertson and Z. Sun.* Matter 7, 59-81 (2024). https://doi.org/10.1016/j.matt.2023.10.025.

                                                 2023

173. Renewably powered electrochemical CO2 reduction toward a sustainable carbon economy; Z. Sun.* RSC Sustain. 1, 19081911 (2023). (Editorial, invited)DOI: https://doi.org/10.1039/D3SU90049E.

172. 液流电池隔膜研究进展; Z. Cao, J. Yang, Y. Zhang and  Z. Sun.*当代化工(2023). 

  • DOI:

    10.13840/j.cnki.cn21-1457/tq.2023.07.042.

171. Editorial for current opinion in green and sustainable chemistry; E. J. Anthony,* L. Duan, F. Montagnaro, Z. Sun and Q. Wang. Curr. Opin. Green Sustainable Chem. 41100791 (2023).

170. Ultrafine MoOx clusters anchored on g-C3N4 with nitrogen/oxygen dual defects for synergistic efficient O2 activation and tetracycline photodegradation; H. Shen, X. Zhan, S. Hong, L. Xu, C. Yang*, A. W. Robertson, L. Hao*, F. Fu and Z. Sun.* Nano Res. 16, 10713 (2023). https://doi.org/10.1007/s12274-023-5880-y. (https://rdcu.be/dgWuo)

169. Electrocatalytic reduction of CO2 to CO with almost 100% faradaic efficiency using oxygen-vacancy enriched two-dimensional MgO; Y. Han, S. An, X. Zhan, L. Hao, L. Xu, S. Hong, D. Park, Y. Chen, Y. Xu, J. Zhao, X. Tan,* A. W. Robertson, Y. Jung* and Z. Sun.* CCS Chem. 61477-1486 (2024). http://doi.org/10.31635/ccschem.023.202303128.

168. Emerging two-dimensional materials for electrocatalytic nitrogen reduction reaction to yield ammonia; Y. Ruan, Z.-H. He, Z.-T. Liu, W. T. Wang, L. Hao, L. Xu, A. W. Robertson and Z. Sun.* J. Mater. Chem A 11, 2259022607 (2023). http://doi.org/10.1039/D3TA04848A.

167. Strategies for enhancing electrochemical CO2 reduction to multi-carbon fuels on copper; X. Li, Y. Chen, Y. Zhan, Y. Xu, L. Hao, L. Xu, X. Li, M. Umer, X. Tan,B. Han,A. W. Robertson and Z. Sun.* The Innov. Mater.  1, 100014 (2023). http://www.the-innovation.org/materials/article/10.59717/j.xinn-mater.2023.100014/

167. Ethylene/2-butene cross-metathesis over a WO3/[SiO2+Y] catalyst mixture for propylene production: the dramatic multifunctional roles of zeolite Y; P. Zhao, Z. Sun, L. Ye, S. Wu, S. C. E. Tsang,* et al.  (2023)To be submitted.

166. Simultaneously enhancing adsorbed hydrogen and dinitrogen to enable Efficient Electrochemical NH3 Synthesis on Sm(OH)3; Z. Lv, X. Liu, W. Li, T.-S. Wu, S. Hong, Y. Ruan, Y.-L. Soo, L. Hao, L. Xu, A. W. Robertson, P. Xiong, M. M.-J. Li, L.-X. Ding* and Z. Sun.* Small Struct. 2300158 (2023).

165. Lithium-mediated electrochemical dinitrogen reduction reactionM. S. Iqbal, Y. Ruan, R. Iftikhar, F. Z. Khan, W. Li, L. Hao,* A. W. Robertson, G. Percoco and Z. Sun.* Ind. Mater. Chem. 1, 563−581 (2023). (Selected as front cover) https://doi.org/10.1039/D3IM00006K

164. Single-atom catalysts for electrochemical N2 reduction to NH3M. S. Iqbal, Z. Yao, Y. Ruan, R. Iftikhar, L. Hao* , A. W. Robertson, S. M. Imran and Z. Sun.* Rare Met. 42, 1075–1097 (2023). https://doi.org/10.1007/s12598-022-02215-7.

163. Single-atom cadmium-N4 sites for rechargeable Li–CO2 batteries with high capacity and ultra-long lifetimeK. Zhu, X. Li, J. Choi, C. Choi, S. Hong, X. Tan,* T.-S. Wu, Y.-L. Soo, L. Hao, A. W. Robertson, Y. Jung* and Z. Sun.* Adv. Funct. Mater. 33, 2213841 (2023). (Selected as inside cover)

162.  Precise design of nickel phthalocyanine molecular structure: optimizing electronic and spatial effects for remarkable electrocatalytic CO2 reductionJ. Li, F. Zhang,* X. Zhan, H. Guo, H. Zhang, W.-Y. Zan,* Z. Sun* and X.-M. Zhang.* Chin. J. Catal. 48, 117126 (2023) .

161. Editorial; Z. Zhang,* Z. Zhang,* Z. Sun,* S. Zhan* and G. Wang*. Chem Asian J. 18, e202300051 (2023). 

160. Pre-adsorbed H-assisted N2 activation on single atom cadmium-O5 decorated In2O3 for efffcient NH3 electrosynthesisZ. Yao, S. Liu, H. Liu, Y. Ruan, S. Hong, T.-S. Wu, L. Hao, Y.-L. Soo, P. Xiong, M. M.-J. Li, A. W. Robertson, Q. Xia, L.-X. Ding* and Z. Sun.* Adv. Funct. Mater. 33, 2209843 (2023).

2022

161. Atomically dispersed Mn for electrochemical CO2 reduction with tunable performanceZ. Yao, X. Zhan, Y. Ruan, W. Li, Y. Xu, Y. Chen, A. W. Robertson, R. Tao, S. Hong,* L. Hao* and Z. Sun.* Chem Asian J. 17, e202200997 (2022).

160. Rigorous assessment of Cl-based anolytes on electrochemical ammonia synthesisZ. Lv, L. Hao, Z. Yao, W. Li, A. W. Robertson and Z. Sun.* Adv. Sci. 9, 2204205 (2022).

159. Recent progress of photocatalysts based on tungsten and related metals for nitrogen reduction to ammonia; X. Hui, L. Wang, Z. Yao, L. Hao* and Z. Sun.* Front. Chem. 10-2022 (2022). DOI: 10.3389/fchem.2022.978078.

158. Boosting CO2 electroreduction to multicarbon products via tuning of copper surface charge; D. Wang, L. Li, Q. Xia, S. Hong, L. Hao,* A. W. Robertson and Z. Sun.* ACS Sustainable Chem. Eng. 10, 11451−11458 (2022). DOI: 10.1021/acssuschemeng.2c03963.

157. Engineering CuO-HfO2 interface toward enhanced CO2 electroreduction to C2H4; X. Li, L. F. Li, L. Wang, Q. Xia, L. Hao, X. Zhan, A. W. Robertson and Z. Sun.* Chem. Commun. 58, 7412–7415 (2022). DOI: 10.1039/D2CC01776H.

156. Design of porous core-shell manganese oxides to boost electrocatalytic dinitrogen reduction; Y. Gao, Q. Xia*, L. Hao*, A. W. Robertson and Z. Sun.* ACS Sustainable Chem. Eng. 10, 1316–1322 (2022). DOI: 10.1021/acssuschemeng.1c07824.

155. Efficient electrocatalytic CO2 reduction to CO by tuning CdO-carbon black interface; L. Wang, X. Li, S. Hong, X. Zhan, D. Wang, L. Hao* and Z. Sun.* "CO2转化专辑",《高等学校化学学报》, Chem. J. Chinese Universities 43 (7), 20220317 (2022).

154. Selective electroreduction of CO2 and CO to C2H4 by synergistically tuning nanocavities and surface charge of copper oxide; X. Li, L. F. Li, Q. Xia, S. Hong, L. Hao, A. W. Robertson, H. Zhang, T. W. B. Lo and Z. Sun.* ACS Sustainable Chem. Eng. 10, 6466−6475 (2022). DOI: 10.1021/acssuschemeng.2c01600.

153. Lowering C−C coupling barriers for efficient electrochemical CO2 reduction to C2H4 by jointly engineering single Bi atoms and oxygen vacancies on CuO; W. Li, L. Li, Q. Xia, S. Hong, L. Wang, Z. Yao, T. -S. Wu, Y. -L. Soo, H. Zhang,T. W. B. Lo, A. W. Robertson, Q. Liu,* L. Hao* and Z. Sun*. Appl. Catal. B Environ. 318, 121823 (2022). DOI: 10.1016/j.apcatb.2022.121823.

152. Electrocatalytic coupling of CO2 and N2 for urea synthesis; J. Wang, Z. Yao, L. Hao* and Z. Sun.* Curr. Opin. Green Sustainable Chem. 37, 100648 (2022). (For a Special Issue of "CO2 Capture and Chemistry"). DOI: 10.1016/j.cogsc.2022.100648.

151. Tuning the coordination structure of single atoms and their interaction with support for CO2 electroreduction; Y. Chen, L. Wang, Z. Yao, L. Hao, X. Tan,* J. Masa, A. W. Robertson and Z. Sun.* Acta Phys. -Chim. Sin. 38, 2207024 (2022). DOI: 10.3866/PKU.WHXB202207024.

150. Single Nb atom modified anatase TiO2(110) for efficient electrocatalytic nitrogen reduction reaction; Y. Gao, Y. Yang, L. Hao, S. Hong, X. Tan,* T. -S. Wu, Y. -L. Soo, A. W. Robertson, Q. Yang* and Z. Sun.* Chem Catal. 2, 2275-2288 (2022). DOI: 10.1016/j.checat.2022.06.010.

149. Single-atom molybdenum–N3 sites for selective hydrogenation of CO2 to CO; Y. Jiang, Y. Sung, C. Choi, G. J. Bang, S. Hong, X. Tan*, T. -S. Wu, Y. -L. Soo, P. Xiong, M. M. -J. LI, L. Hao, Y. Jung* and Z. Sun.* Angew. Chem. Int. Ed. 61, e202203836 (2022). DOI: 10.1002/anie.202203836.

148. Modulation of photogenerated carrier transport by integrating of Sb2O3 with Fe2O3 for improved photoelectrochemical water oxidation; F. K. Chen, H. R. Pan, Z. J. Lu, X. N. Huang, Z. Sun* and X. Chen.* ACS Appl. Energy Mater. 5, 8844–8851 (2022). DOI: 10.1021/acsaem.2c01331.

147. Single atom and defect engineering of CuO for efficient electrochemical reduction of CO2 to C2H4; S. Chu, C. Kang , W. Park, Y. Han, S. Hong, L. Hao, H. Zhang, T. W. B. Lo, A. W. Robertson, Yousung Jung,* B. Han* and Z. Sun.* SmartMat 3, 194–205 (2022). DOI: 10.1002/smm2.1105.

146. Interface engineered Sb2O3/W18O49 heterostructure for enhanced visible-light-driven photocatalytic N2 reduction; X. Hui, L. Li, Q. Xia, S. Hong, L. Hao, A. W. Robertson and Z. Sun.* Chem. Eng. J. 438, 135485 (2022). DOI: 10.1016/j.cej.2022.135485.

145. Photocatalytic nitrogen reduction to ammonia: Insights into the role of defect engineering in photocatalysts; H. Shen, M. Yang, L. Hao, J. R. Wang, J. Strunk* and Z. Sun.* Nano Res. 15, 2773–2809 (2022). DOI:10.1007/s12274-021-3725-0. (Selected as cover page) (ESI高被引

144. Cadmium-based metal–organic frameworks for high-performance electrochemical CO2 reduction to CO over wide potential range; X. Li, S. Hong, L. Hao and Z. Sun.* Chin. J. Chem. Eng. 中国化学工程学报  (英文版) (The Special Issue of "Carbon-neutrality Chemical Engineering" Organized by Academician Chunming Xu) 43, 143–151 (2022). DOI: https://doi.org/10.1016/j.cjche.2021.10.013.

143. Integration of ultrafine CuO nanoparticles with two-dimensional MOFs for enhanced electrochemical CO2 reduction to ethylene; L. L. Wang, X. Li, L.Hao, S. Hong,* A. W. Robertson and Z. Sun.* Chin. J. Catal. 43, 1049–1057 (2022). DOI: 10.1016/S1872-2067(21)63947-5. (Selected as cover page) (ESI高被引

142. Engineering vacancy and hydrophobicity of two-dimensional TaTe2 for efficient and stable electrocatalytic N2 reductionZ. Zhao, J. Park, C. Choi, S. Hong, X. Hui, H. Zhang, T. W. B. Lo, A. W. Robertson, Z. Lv, Y. Jung,* Z. Sun.* The Innov. 3, 100190 (2022). (入选封面主题) DOI: https://doi.org/10.1016/j.xinn.2021.100190.

2021

141. Facile synthesis of two-dimensional copper terephthalate for efficient electrocatalytic CO2 reduction to ethylene; Y. Zhang, Y. M. Li, Q. Tan, S. Hong* and Z. Sun.* J. Exp. Nanosci. 16, 247–255 (2021). DOI: 10.1080/17458080.2021.1957844 (Special Issue of "CO2 Catalysis").

140. Improving the catalytic performance of MOFs for CO2 conversion: Strategies and perspectives; L. D. Hao, Q. N. Xia,* Q. Zhang,* J. Masa and Z. Sun.* Chin. J. Catal. 42, 1903–1920 (2021).

139. Enhanced electrochemical CO2 reduction to ethylene over CuO by tuning oxygen vacancies and metal doping; Y. Q. Jiang, C. Choi, S. Hong, S. Chu, T.-S. Wu, Y.-L. Soo, D. Hao, Y. Jung* and Z. Sun.* Cell Rep. Phys. Sci. 2, 100356 (2021). DOI: 10.1016/j.xcrp.2021.100356.

138. 二氧化碳还原转化; Z. M. Liu* and Z. Sun.* Acta Phys. -Chim. Sin. (物理化学学报) 37, 2012024 (2021).

137. Electrocatalytic CO2 reduction to ethylene over Cu nanoparticles supported on CeO2: Effect of CeO2 exposed facets (CeO2担载Cu纳米粒子电催化CO2还原产乙烯:CeO2不同暴露晶面对催化性能的影响); S. L. Chu, X. Li, A. W. Robeartson and Z. Sun.* Acta Phys. -Chim. Sin. (物理化学学报) 37, 2009023 (2021).

136. Electrochemical ammonia synthesis: Mechanistic understanding and catalyst design; H. D. Shen, C. Choi, J. Masa, X. Li, Y. Jung,* J. S. Qiu and Z. Sun.* Chem 71708-1754 (2021). DOI: 10.1016/j.chempr.2021.01.009. (ESI高被引

135. Metal oxide-based materials for electrochemical CO2 reduction (基于金属氧化物材料的二氧化碳电催化还原); L. D. Hao and Z. Sun.* Acta Phys. -Chim. Sin. (物理化学学报) 37, 2009033 (2021).(Selected as outstanding paper by Acta Phys. -Chim. Sin.)

134. Earth-abundant coal-derived carbon nanotube/carbon composites as efficient bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries; Z. J. Lu, S. D. Yao, Y. Z. Dong, T. Wang, H. R. Pan, X. N. Huang, D. L. Wu,* Z. Sun* and X. X. Chen.* J. Energy Chem. 56, 87-97 (2021). DOI: 10.1016/j.jechem.2020.07.040.

2020

133. An efficient pH-universal electrocatalyst for oxygen reduction: Defect-rich graphitized carbon shell wrapped cobalt within hierarchical porous N-doped carbon aerogel; X. K. Wang, Z. Zhang, H. Y. Gai, Z. Sun* and M. H. Huang.* Mater. Today Energy 17, 100452 (2020).

132. Single yttrium sites on carbon-coated TiO2 for efficient electrocatalytic N2 reduction; L. H. Yang, C. Choi, S. Hong, Z. M. Liu, M. M. Yang, H. D. Shen, A. W. Robertson, H. Zhang, T. W. B. Lo, Y. Jung* and Z. Sun.* Chem. Commun. 56, 10910-10913 (2020). DOI: 10.1039/D0CC01136C.

131. A miracle metal@zeolite for selective conversion of syngas to ethanol; H. D. Shen and Z. Sun.* Chem 6, 544-548 (2020). DOI: https://doi.org/10.1016/j.chempr.2020.02.005.

130. Dramatically boost oxygen electrocatalysis of N-doped carbon for zinc-air batteryH. M. Liu, X. N. Huang, Z. J. Lu, T. Wang, Y. M. Zhu, J. X. Cheng, Y. Wang, D. L. Wu*, Z. Sun,* A. W. Robertson and X. X. Chen.* Nanoscale 12, 9628-9639 (2020). DOI: 10.1039/C9NR10800A.

129. Surface-engineered oxidized two-dimensional Sb for efficient visible light-driven N2 fixation; Z. Q. Zhao, C. Choi, S. Hong, H. D. Shen, C. Yan,* J. Masa, Y. Jung,* J. S. Qiu and Z. Sun.* Nano Energy 78, 105368 (2020). DOI: 10.1016/j.nanoen.2020.105368

128. Stabilization of Cu+ by tuning CuO-CeO2 interface for selective electrochemical CO2 reduction to ethylene; S. L. Chu, X. P. Yan, C. Choi, S. Hong, A. W. Robertson, J. Masa, B. X. Han, Y. Jung* and Z. Sun.* Green Chem. 22, 6540-6546 (2020). DOI: 10.1039/D0GC02279A.

127. Metal-tuned W18O49 for efficient electrocatalytic N2 reduction; M. M. Yang, R. P. Huo, H. D. Shen, Q. N. Xia,* A. W. Robertson, J. S. Qiu and Z. Sun.* ACS Sustainable Chem. Eng. 8, 2957-2963 (2020). DOI: 10.1021/acssuschemeng.9b07526.

126. Achieving highly selective electrochemical CO2 reduction by tuning CuO-Sb2O3 nanocomposites; Y. M. Li, S. L. Chu, H. D. Shen, Q. N. Xia,* A. W. Robertson,* J. Masa, U. Siddiqui and Z. Sun.* ACS Sustainable Chem. Eng. 8, 4948-4954 (2020). DOI: 10.1021/acssuschemeng.0c00800.

125. Photocatalytic reduction of CO2 by metal-free based materials: Recent advances and future perspective; H. D. Shen, T. Peppel,* J. Stunk and Z. Sun.* Solar RRL  4, 1900546 (2020). DOI: doi.org/10.1002/solr.201900546. (ESI高被引

124. Highly stable two-dimensional bismuth metal-organic frameworks for efficient electrochemical reduction of CO2; F. Li, G. H. Gu, C. Choi, P. Kolla*, S. Hong, T. -S. Wu, Y. -L. Soo, J. Masa, S. Mukerjee,  Y. Jung,* J. S. Qiu and Z. Sun.* Appl. Catal. B Environ. 277, 119241 (2020). DOI: 10.1016/j.apcatb.2020.119241.

123. Two-dimensional materials for energy conversion and storage; H. C. Tao, Q. Fan, T. Ma, H. Z. Liu, H. Gysling, J. Texter,* F. Guo and Z. Sun,* Prog. Mater. Sci. 111, 100637 (2020). DOI: 10.1016/j.pmatsci.2020.100637.

122. Activation of Ni particles into single Ni-N atoms for efficient electrochemical reduction of CO2; Q. Fan, P. F. Hou, C. Choi, S. Hong, Y. L. Su, T. Wu, P. Kang,* Y. S. Jung* and  Z. Sun.* Adv. Energy Mater. 10, 1903068 (2020). DOI: 10.1002/aenm.201903068. (ESI高被引

121. Reduced graphene oxides with engineered defects enable efficient electrochemical reduction of dinitrogen to ammonia in wide pH range; M. L. Zhang, C. Choi, R. P. Huo, G. H. Gu, S. Hong, C. Yan, S. Y. Xu, A. W. Robertson, J. S. Qiu,* Y. Jung* and Z. Sun.* Nano Energy 68, 104323 (2020). DOI: 10.1016/j.nanoen.2019.104323.

120. 离子液体自模板合成多孔碳氮 材料及其对CO2的吸附性能; J. H. Liu, H. T. Liu, G. Y. Zhao* and Z. Sun.* 过程工程学报 Chin. J. Process Eng. 20, 108-115 (2020). DOI: 10.12034/j.issn.1009-606X.219164.

2019

119. Atomically dispersed Ni sites for selective electrocatalytic CO2 reduction; F. Li, S. Hong, X. Li, J. Masa and Z. Sun.* ACS Appl. Energy Mater. 2, 8836-8842 (2019). DOI: 10.1021/acsaem.9b01828.

118. Single Sb sites for efficient electrochemical CO2 reduction; M. W. Jia,  S. Hong, T. -S. Wu, Xin Li, Y. L. Soo and Z. Sun.* Chem. Commun. 55, 12024-12027 (2019). DOI: 10.1039/C9CC06178A.

117. Efficient electrochemical reduction of CO2 by Ni-N catalysts with tunable performance; M. L. Zhang, T. -S. Wu, S. Hong, Q. Fan, Y. L. Soo, J. Masa, J. S. Qiu and Z. Sun.* ACS Sustainable Chem. Eng. 7, 15030-15035 (2019). DOI:10.1021/acssuschemeng.9b03502.

116. Synergistic catalysis of CuO/In2O3 composites for highly selective electrochemical CO2 reduction to CO; S. L. Chu, S. Hong, J. Masa, X. Li and Z. Sun.* Chem. Commun. 55, 12380-12383 (2019). DOI: 10.1039/C9CC05435A.

115. Efficient bifunctional Co/N-dual-doped carbon electrocatalysts for oxygen reduction and evolution reaction; M. N. Han, M. J. Shi, J. Wang, M. L. Zhang, C. Yan,* J. T. Jiang, S. H. Guo, Z. Sun* and Z. H. Guo. Carbon 153, 575-584 (2019). DOI: 10.1016/j.carbon.2019.07.075.

114. ZIF 67 derived cobalt/nitrogen-doped carbon composites for efficient electrocatalytic N2 reduction; Y. N. Gao, Z. S. Han, S. Hong,* T. B. Wu, X. Li, J. S. Qiu and Z. Sun.* ACS Appl. Energy Mater. 2, 6071-6077 (2019). DOI: 10.1021/acsaem.9b01135.

113. Understanding the antifouling mechanism of zwitterionic monomer grafted PVDF membranes: A comparative experimental and molecular dynamics simulation study; Z. Y. Liu,* Q. Jiang, Z. Q. Jin, Z. Sun, W. J. Ma and Y. L. Wang.* ACS Appl. Mater. Interfaces 11, 14408-14417 (2019). DOI: 10.1021/acsami.8b22059.

112. Oxygen vacancy enables electrochemical N2 fixation over WO3 with tailored structure; Z. Sun,* R. P. Huo, C. Choi, S. Hong, T. S. Wu, Z. S. Han, Y. C. Liu, C. Yan, J. S. Qiu,* Y. L. Soo and Y. S. Jung.* Nano Energy 62, 869-875 (2019). 10.1016/j.nanoen.2019.06.019.

111. Highly porous metalloporphyrin covalent ionic frameworks with well defined functional groups as excellent catalysts for CO2 cycloaddition; J. H. Liu, G. Y. Zhao, O. Cheung, L. N. Jia, Z. Sun* and S. J. Zhang.* Chem. Eur. J. 25, 9052-9059 (2019). DOI: 10.1002/chem.201900992.

110. Boosting ion dynamics through superwettable leaf-like film based on porous g-C3N4 nanosheets for ionogel supercapacitors; M. J. Shi, C. Yang, C. Yan*, J. T. Jiang, Y. C. Liu, Z. Sun,* W. L. Shi, J. Gao, Z. H. Guo and J. H. Ahn.* NPG Asian Mater. 11, 61 (2019). DOI: 10.1038/s41427-019-0161-7.

109. A N, P dual-doped carbon with high porosity as an advanced metal-free oxygen reduction catalyst; Y. N. Sun, M. L. Zhan, L. Zhao, Z. Y. Sui, Z. Sun* and B. H. Han.* Adv. Mater. Interf. 6, 1900592 (2019). DOI: doi.org/10.1002/admi.201900592.

108. Synthesis of Fe2O3  loaded porous g-C3N4 photocatalyst for photocatalytic reduction of dinitrogen to ammonia; S. Z. Liu, S. B. Wang, Y. Jiang, Z. Q. Zhao, G. Y. Jiang* and Z. Sun.* Chem. Eng. J. 373, 572-579 (2019). (ESI高被引

107. Graphene-based materials for electrochemical CO2 reduction; T. Ma, Q. Fan, X. Li, T. B. Wu,* J. S. Qiu and Z. Sun.* J. CO2 Util.  30, 168-182 (2019).

106. Nitrogen fixation by Ru single-atom electrocatalytic reduction; H. C. Tao, C. Choi, L. X. Ding, Z. Jiang, Z. S. Han, M. W. Jia, Q. Fan, Y. N. Gao, H. H. Wang,* A. W. Robertson, S. Hong, Y. Jung* and Z. Sun.* Chem 5, 204-214 (2019). DOI: 10.1016/j.chempr.2018.10.007. (ESI高被引

105. Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction; Z. S. Han, C. Choi, S. Hong, Q. Fan, Y. Jung,* J. S. Qiu and Z. Sun.* Appl. Catal. B Environ. 257, 117896 (2019). DOI:10.1016/j.apcatb.2019.117896. (ESI高被引

104. High-yield production of few-layer boron nanosheets for efficient electrocatalytic N2 reduction; Q. Fan, C. Choi, C. Yan, Y. C. Liu, J. S. Qiu, S. Hong,* Y. Jung* and Z. Sun.* Chem. Commun. 55, 4246-4249 (2019). DOI:   10.1039/C9CC00985J.

103. Liquid exfoliation of two-dimensional PbI2 nanosheets for ultrafast photonics; Q. Fan, J. W. Huang, N. N. Dong, Y. C. Liu, C. Yan, X. Li, S. Z. Liu, J. Wang,* J. S. Qiu and Z. Sun.* ACS Photonics 6, 1051-1057 (2019). DOI: 10.1021/acsphotonics.9b00122.

102. Efficient visible-light driven N2 fixation over two-dimensional Sb/TiO2 composites; Z. Q. Zhao, S. Hong, C. Yan,* C. Choi, Y. Jung,* Y. C. Liu,  X. Li, S. Z. Liu, J. S. Qiu and Z. Sun.* Chem. Commun. 55, 7171-7174 (2019) DOI: 10.1039/C9CC02291K.

101. Single-atom catalysis of electrochemical CO2 reduction; M. W. Jia, Q. Fan, M. L. Zhang, S. Z. Liu, J. S. Qiu and Z. Sun.* Curr. Opin. Green Sustainable Chem. 16, 1-6 (2019). DOI: 10.1016/j.cogsc.2018.11.002.

100. Photocatalytic fixation of nitrogen to ammonia by single Ru atom decorated TiO2 nanosheets; S. Z. Liu, H. B. Wang, M. M. You, Z. Q. Zhao, G. Y. Jiang,* J. S. Qiu, B. J. Wang* and Z. Sun.* ACS Sustainable Chem. Eng. 7, 6813-6820 (2019). DOI: 10.1021/acssuschemeng.8b06134.

99. Supercritical fluid facilitated exfoliation and processing of two-dimensional materials; Z. Sun,* Q. Fan, M. L. Zhang, S. Z. Liu, H. C. Tao and J. Texter.* Adv. Sci. 6, 1901084 (2019). DOI: 10.1002/advs.201901084.

98. Ultrasound-assisted nitrogen and boron co-doping of graphene oxide for efficient oxygen reduction reaction; M. L. Zhang, H. C. Tao, Y. C. Liu, C. Yan, A. W. Robertson, S. Z. Liu, J. Masa,* J. S. Qiu and Z. Sun.* ACS Sustainable Chem. Eng. 7, 3434-3442 (2019).

2018

97. Carbon supported Ni for electrochemical CO2 reduction; M. W. Jia, C. Choi, T. S. Wu, Chen Ma, Peng Kang, H. C. Tao, Q. Fan, S. Hong, Y. L. Soo, Y. Jung,* S. Z. Liu and Z. Sun.*  Chem. Sci. 9, 8775-8780 (2018). (Selected as 2018 Chemical Science HOT Article Collection; Most popular 2018-2019 catalysis articles; Most popular 2018-2019 nanoscience articles; outside front cover; highlighted by RSC).

96. Simple synthesis of two-dimensional MoP2 nanosheets for efficient electrocatalytic hydrogen evolution; Y. N. Gao, M. L. Zhang, J. J. Ding, J. Masa,* S. Z. Liu, Z. Sun.* Electrochem. Commun. 97, 27-31 (2018).

95. Graphene and its hybrids in photocatalysis; S. Z. Liu, Z. Q. Zhao, Y. N. Gao and Z. Sun.* Curr. Graphene Sci. 2, 79-96 (2018).

94. Electrochemical CO2 reduction to C2+ species: Heterogeneous electrocatalysts, reaction pathways, and optimization strategies; Q. Fan, M. L. Zhang, M. W. Jia, S. Z. Liu, J. S. Qiu and Z. Sun.* Mater. Today Energy 10, 280-301 (2018).

93. Tuning the surface properties of Pd to facilitate electrocatalytic CO2 reduction to CO with reduced overpotential; Z. S. Han, C. Choi, H. C. Tao, A. W. Robertson, Q. Fan, Y. Jung,* S. Z. Liu and Z. Sun.*  Catal. Sci. Techn. 8, 3894-3900 (2018).

92. Lignosulfonate biomass derived N and S co-doped porous carbon for efficient oxygen reduction reaction; M. L. Zhang, Y. L. Song, H. C. Tao, C. Yan, Y. C. Liu, S. Z. Liu, R. T. Tao, X. Zhang* and Z. Sun.* Sustain. Energy Fuels 2, 1820-1827 (2018).

91. New solvent-stabilized few-layer black phosphorus for antibacterial applications; Z. Sun,* Y. Q. Zhang, H. Yu, C. Yan, Y. C. Liu, S. Hong, H. C. Tao, A. W. Robertson, Z. Wang* and A. A. H. Pádua. Nanoscale 10, 12543-12553 (2018).

90. Entrapped single tungstate site in zeolite for cooperative catalysis of olefin metathesis with Brønsted acid site; P. Zhao, L. Ye, Z. Sun, B. T. W. Lo, H. Woodcock, C. Huang, A. Kirkland, C. Tang, K. Suriyi and S. C. Edman Tsang.* J. Am. Chem. Soc. 140, 6661-6667 (2018).

89. Heterogeneous catalysis of CO2 hydrogenation to C2+ products; Y. N. Gao, S. Z. Liu, Z. Q. Zhao, H. C. Tao, and Z. Sun.* Acta Phys. -Chim. Sin. 34, 858-872  (2018). (Invited)

88. Nanosheet catalysis of carbon dioxide photoreduction: Fundamentals and challenges; Z. Sun, N. Talreja, H. C. Tao, J. Texter, M. Muhler,* J. Strunk and J. F. Chen.* Angew. Chem. Int. Ed. 57, 7610-7627 (2018). (ESI高被引

87. Supercritical diethylamine facilitated loading of ultrafine Ru particles on few-layer graphene for solvent-free hydrogenation of levulinic acid to γ-valerolactone; H. C. Tao, J. J. Ding, C. Xie, J. l. Song* and Z. Sun.* Nanotechnology 29, 075708 (2018).

86. Doping palladium with tellurium for highly selective electrocatalytic reduction of aqueous CO2 to CO; H. C. Tao, X. F. Sun, Z. S. Han, Q. G. Zhu, A. W. Robertson, T. Ma, Q. Fan, B. X. Han,* Y. Jung* and Z. Sun.* Chem. Sci. 9, 483-487 (2018). This article is part of the themed collection: In celebration of Chinese New Year. (ESI高被引

85. Nitrogen-doped and nanostructured carbons withhigh surface area for enhanced oxygen reduction reaction; Z. Y. Sui, X. Li, Z. Sun,* H. C. Tao, P. Y. Zhang, L. Zhao and B. H. Han.* Carbon 126, 111-118 (2018).

2017

84. Nonliear absorption induced transparency and optical limiting of black phosphorus nanosheets; J. W. Huang, N. N. Dong, S. F. Zhang, Z. Sun* and J. Wang.* ACS Photonics 4, 3063-3070 (2017).

83. Heterogeneous electrochemical CO2 reduction using nonmetallic carbon-based catalysts: Current status and future challenges; T. Ma, Q. Fan, H. C. Tao, Z. S. Han, M. W. Jia, Y. N. Gao, W. J. Ma* and Z. Sun.* Nanotechnology 28, 472001 (2017).

82. Fundamentals and challenges in electrochemical reduction of CO2 using two-dimensional materials; Z. Sun,* T. Ma, H. C. Tao and B. X. Han.* Chem 3, 560-587 (2017). (ESI高被引

81. Exfoliation of stable 2D black phosphorus for device fabrication; Y. Q. Zhang, N. N. Dong, H. C. Tao, C. Yan, J. W. Huang, T. F. Liu, A. W. Robertson, J. Texter, J. Wang* and Z. Sun.* Chem. Mater. 29, 6445-6456 (2017).

80. Two-dimensional nanosheets for electrocatalysis in energy generation and conversion; H. C. Tao, Y. N. Gao, N. Talreja, F. Guo, J. Texter,* C. Yan and Z. Sun.* J. Mater. Chem. A 5, 7257-7284 (2017). This article is part of the themed collections: Recent Review Articles, JMC A Editor’s choice collection: Recent advances in solar fuels and photocatalysis research and 2017 Journal of Materials Chemistry A Most Accessed Manuscripts. (ESI高被引

79. High-efficiency mixing process in secondary rotating stream; D. G. Wang, Y. H. Wang, Z. Sun, R. T. Zhou, B. K. Zhu and R. K. Zhang. Chem. Eng. J. 313, 807-814 (2017).

78. N-doping of graphene oxide at low temperature for oxygen reduction reaction; H. C. Tao, C. Yan, A. W. Robertson, Y. N. Gao, J. J. Ding, Y. Q. Zhang, T. Ma and Z. Sun.* Chem. Commun. 53, 873-876(2017). (ESI高被引

77. Scalable exfoliation and dispersion of two-dimensional materials - An update; H. C. Tao, Y. Q. Zhang, Y. N. Gao, Z. Sun* and J. Texter.* Phys. Chem. Chem. Phys. 19, 921-960(2017). 2017 PCCP HOT Articles. (ESI高被引

76. Graphene/porous beta TiO2 nanocomposites prepared through a simple hydrothermal method; Y. Q. Zhang, H. C. Tao, Y. N. Gao, T. Ma, J. J. Ding and Z. Sun.* Curr. Graphene Sci. 1, 64-70 (2017).

2016

75. Few-layer graphene modified with nitrogen-rich metallomacrocyclic complexes as precursor for bifunctional oxygen electrocatalysts; D. M. Morales, J. Masa, C. Andronescu, Y. U. Kayran, Z. Sun and W. Schuhmann.* Electrochim. Acta 222, 1191-1199 (2016).

74. Demonstrating the steady performance of iron oxide composites over 2000 cycles at fast charge-rates for Li-ion batteries; Z. Sun,* E. Madej, A. Genc, M. Muhler, J. Arbiol, W. Schuhmann and E. Ventos.* Chem. Commun. 52, 7348-7351 (2016).

73. Hydrazine-assisted Liquid Exfoliation of MoS2 for Catalytic Hydrode oxygenation of 4-Methylphenol; G. L. Liu, H. L. Ma, I. Teixeira, Z. Sun, Q. N. Xia, X. L. Hong and S. C. E. Tsang.* Chem. Eur. J. 22, 2910-2914 (2016).

72. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: Oxygen and hydrogen evolution; J. Masa,* P. Weide, D. Peeters, I. Sinev, W. Xia, Z. Sun, C. Somsen, M. Muhler and W. Schuhmann.* Adv. Energy Mater. 6, 1670072 (2016).

2015

71. High-quality functionalized few-layer graphene: Facile fabrication and doping with nitrogen as a metal-free catalyst for the oxygen reduction reaction; Z. Sun,* J. Masa, P. Weide, S. M. Fairclough, A. W. Robertson, P. Ebbinghaus, J. H. Warner, S. C. E. Tsang, M. Muhler and W. Schuhmann. J. Mater. Chem. A 3, 15444-15450 (2015).

70. Liquid-phase exfoliation of graphite for mass production of pristine few-layer graphene; Y. Wei and Z. Y. Sun.* Curr. Opin. Colloid Interface Sci. 20, 311-321 (2015).

69. One-pot synthesis of carbon-coated nanostructured iron oxide on few-layer graphene for lithium-ion batteries; Z. Sun,* E. Madej, C. Wiktor, I. Sinev, R. A. Fischer, T. G. van, M. Muhler, W. Schuhmann and E. Ventosa.* Chem. Eur. J. 21, 16154-16161 (2015).

2014

68. A carbon-coated TiO2 (B) nanosheet composite for lithium ion batteries; Z. Sun,* X. Huang, M. Muhler, W. Schuhmann and E. Ventosa.* Chem. Commun. 50, 5506-5509 (2014).

67. Amine-based solvents for exfoliating graphite to graphene outperform the dispersing capacity of N-methylpyrrolidone and surfactants; Z. Sun,* X.Huang, F. Liu, X. N. Yang,* C. Roesler, R. A. Fischer, M. Muhler and W. Schuhmann. Chem. Commun. 50, 10382-10385 (2014).

66. High-concentration graphene dispersions with minimal stabilizer: A scaffold for enzyme immobilization for glucose oxidation; Z. Sun,* J. Vivekananthan, D. A. Guschin, X. Huang, V. Kuznetsov, P. Ebbinghaus, A. Sarfraz, M. Muhler and W. Schuhmann.* Chem. Eur. J. 20, 5752-5761 (2014).

65. Hollow and yolk-shell iron oxide nanostructures on few-layer graphene in Li-ion batteries; Z. Sun,* K. P. Xie, Z. A. Li, I. Sinev, P. Ebbinghaus, A. Erbe, M. Farle, W. Schuhmann, M. Muhler and E. Ventosa.* Chem. Eur. J. 20, 2022-2030 (2014).

64. MnxOy/NC and CoxOy/NC nanoparticles embedded in a nitrogen-doped carbon matrix for high performance bifunctional oxygen electrodes; J. Masa, W. Xia, I. Sinev, A. Zhao, Z. Sun, S. Gruetzke, P. Weide, M. Muhler* and W. Schuhmann.* Angew. Chem. Int. Ed. 53, 8508-8512 (2014).

2013

63. Ag-stabilized few-layer graphene dispersions in low boiling point solvents for versatile nonlinear optical applications; Z. Sun, N. N. Dong, K. P. Wang, D. König, T. C. Nagaiah, M. D. Sanchez, A. Ludwig, X. Cheng, W. Schuhmann, J. Wang* and M. Muhler.* Carbon 62, 182-192 (2013).

62. High-yield exfoliation of graphite in acrylate polymers: A stable few-layer graphene nanofluid with enhanced thermal conductivity; Z. Sun,* S. Poller, X. Huang, D. Guschin, C. Taetz, P. Ebbinghaus, J. Masa, A. Erbe, A. Kilzer, W. Schuhmann and M. Muhler. Carbon 64, 288-294 (2013).

61. Nanostructured few-layer graphene with superior optical limiting properties fabricated by a catalytic steam etching process; Z. Sun, N. N. Dong, K. P. Xie, W. Xia, D. König, T. C. Nagaiah, M. D. Sanchez, P. Ebbinghaus, A. Erbe, X. Y. Zhang, A. Ludwig, W. Schuhmann, J. Wang* and M. Muhler.* J. Phys. Chem. C 117, 11811-11817 (2013).

60. Trace metal residues promote the activity of supposedly metal-free nitrogen-modified carbon catalysts for the oxygen reduction reaction; J. Masa, A. Zhao, W. Xia, Z. Sun, B. Mei, M. Muhler and W. Schuhmann.* Electrochem. Commun. 34, 113-116 (2013).

2012

59. Rapid and surfactant-free synthesis of bimetallic Pt-Cu nanoparticles simply via ultrasound-assisted redox replacement; Z. Sun, J. Masa, W. Xia, D. König, A. Ludwig, Z. A. Li, M. Farle, W. Schuhmann and M. Muhler.* ACS Catal. 2, 1647-1653 (2012).

58. Highly concentrated aqueous dispersions of graphene exfoliated by sodium taurodeoxycholate: Dispersion behavior and potential application as a catalyst support for the oxygen-reduction reaction; Z. Sun, J. Masa, Z. M. Liu,* W. Schuhmann and M. Muhler.* Chem. Eur. J. 18, 6972-6978 (2012).

57. Ionic liquid-stabilized graphene and its use in immobilizing a metal nanocatalyst; W. J. Xiao, Z. Sun, S. Chen, H. Y. Zhang, Y. H. Zhao, C. L. Huang and Z. M. Liu.* RSC Adv. 2, 8189-8193 (2012).

56. One-pot solvothermal method to synthesize platinum/W18O49 ultrafine nanowires and their catalytic performance; H. Y. Zhang, C. L. Huang, R. Tao, Y. F. Zhao, S. Chen, Z. Sun and Z. M. Liu.* J. Mater. Chem. 22, 3354-3359 (2012).

55. Controllable synthesis of titania/reduced graphite oxide nanocomposites with various titania phase compositions and their photocatalytic performance; Y. F. Zhao, Y. Xie, Z. Sun, H. Y. Zhang, R. T. Tao, C. L. Huang and Z. M. Liu,* Sci. China Chem. 55, 1294-1302 (2012).

2011

54. CO2-mediated synthesis of ZnO nanorods and their application in sensing ethanol vapor; G. M. An, Z. Sun, Y. Zhang, K. L. Ding, Y. Xie, R. T. Tao, H. Y. Zhang and Z. M. Liu.* J. Nanosci. Nanotechnol. 11, 1252-1258 (2011).

53. Porous Fe3O4 nanoparticles: Synthesis and application in catalyzing epoxidation of styrene; C. L. Huang, H. Y. Zhang, Z. Sun, Y. F. Zhao, S. Chen, R. T. Tao and Z. M. Liu.* J. Colloid Interface Sci. 364, 298-303 (2011).

52. Thermal-stable carbon nanotube-supported metal nanocatalysts by mesoporous silica coating; Z. Sun, H. Y. Zhang, Y. F. Zhao, C. L. Huang, R. T. Tao, Z. M. Liu* and Z. D. Wu. Langmuir 27, 6244-6251 (2011).

51. Ultrasonication-assisted uniform decoration of carbon nanotubes by various particles with controlled size and loading; Z. Sun, Z. Li, C. L. Huang, Y. F. Zhao, H. Y. Zhang, R. T. Tao and Z. M. Liu.* Carbon 49, 4376-4384 (2011).

50. In-situ loading ultrafine AuPd particles on ceria: highly active catalyst for solvent-free selective oxidation of benzyl alcohol; H. Y. Zhang, Y. Xie, Z. Sun, R. T. Tao, C. L. Huang, Y. F. Zhao and Z. M. Liu.* Langmuir 27, 1152-1157 (2011).

49. High-intensity sonication-assisted synthesis of supported noble metal nanocatalysts; Z. Sun, S. Chen, C. L. Huang, Y. F. Zhao, H. Y. Zhang, Z. Li and Z. M. Liu.* Scientia. Sinica. Chimica. 41, 1366-1371 (2011).

2010

48. In situ loading of palladium nanoparticles on mica and their catalytic applications; R. T. Tao, Z. Sun, Y. Xie, H. Y. Zhang, C. L. Huang, Y. F. Zhao and Z. M. Liu.* J. Colloid Interface Sci. 353, 269-274 (2010).

47. Arginine-mediated synthesis of highly efficient catalysts for transfer hydrogenations of ketones; R. T. Tao, Y. Xie, G. An, K. L. Ding, H. Y. Zhang, Z. Sun and Z. M. Liu.* J. Colloid Interface Sci. 351, 501-506 (2010).

46. Pt-Ru/CeO2/carbon nanotube nanocomposites: An efficient electrocatalyst for direct methanol fuel cells; Z. Sun, X. Wang, Z. M. Liu,* H. Y. Zhang, P. Yu and L. Q. Mao.* Langmuir 26, 12383-12389 (2010).

45. Chitosan-mediated synthesis of mesoporous alpha-Fe2O3 nanoparticles and their applications in catalyzing selective oxidation of cyclohexane; C. L. Huang, H. Y. Zhang, Z. Sun and Z. M. Liu.* Sci. China Chem. 53, 1502-1508 (2010).

44. Control of optical limiting of carbon nanotube dispersions by changing solvent parameters; J. Wang,* D. Fruchtl, Z. Sun, J. N. Coleman and W. J. Blau. J. Phys. Chem. C 114, 6148-6156 (2010).

43. Shape and size controlled synthesis of anatase nanocrystals with the assistance of ionic liquid; K. L. Ding, Z. J. Miao, B. J. Hu, G. M. An, Z. Sun, B. X. Han and Z. M. Liu.* Langmuir 26, 5129-5134 (2010).

42. Study on the anatase to rutile phase transformation and controlled synthesis of rutile nanocrystals with the assistance of ionic liquid; K. L. Ding, Z. J. Miao, B. J. Hu, G. M. An, Z. Sun, B. X. Han and Z. M. Liu.* Langmuir 26, 10294-10302 (2010).

41. Supercritical CO2-facilitating large-scale synthesis of CeO2 nanowires and their application for solvent-free selective hydrogenation of nitroarenes; Z. Sun, H. Y. Zhang, G. M. An, G. Y. Yang and Z. M. Liu,* J. Mater. Chem. 20, 1947-1952 (2010).

40. The immobilization of glycidyl-group-containing ionic liquids and its application in CO2 cycloaddition reactions; Y. Xie, K. L. Ding, Z. M. Liu,* J. J. Li, G. M. An, R. T. Tao, Z. Sun and Z. Z. Yang.* Chem. Eur. J. 16, 6687-6692 (2010).

39. The solvent-free selective hydrogenation of nitrobenzene to aniline: an unexpected catalytic activity of ultrafine Pt nanoparticles deposited on carbon nanotubes; Z. Sun, Y. F. Zhao, Y. Xie, R. T. Tao, H. Y. Hong, C. L. Huang and Z. M. Liu.* Green Chem. 12, 1007-1011 (2010).

38. Green solvent-based approaches for synthesis of nanomaterials; Z. M. Liu* and Z. Sun. Sci. China Chem. 53, 372-382 (2010).

37. New solvents for nanotubes: Approaching the dispersibility of surfactantsS. D. Bergin, Z. Sun, P. Streich, J. Hamilton and J. N. Coleman.* J. Phys. Chem. C 114, 231-237 (2010).

2004-2009

36. Effects of ambient conditions on solvent-nanotube dispersions: Exposure to water and temperature variation; Z. Sun,* I. O'Connor, S. Bergin and J. Coleman. J. Phys. Chem. C 113, 1260-1266 (2009).

35. In situ controllable loading of ultrafine noble metal particles on titania; Y. Xie, K. L. Ding, Z. M. Liu,* R. T. Tao, Z. Sun, H. Y. Zhang and G. M. An. J. Am. Chem. Soc. 131, 6648-6649 (2009).

34. Multicomponent solubility parameters for single-walled carbon nanotube-solvent mixtures; S. Bergin, Z. Sun, D. Rickard, P. Streich, J. Hamilton and J. Coleman.* ACS Nano 3, 2340-2350 (2009).

33. p-Aminophenylacetic acid-mediated synthesis of monodispersed titanium oxide hybrid microspheres in ethanol solutionH. Y. Zhang, Y. Xie, Z. M. Liu,* R. T. Tao, Z. Sun, K. L. Ding, and G. M. An. J. Colloid. Interf. Sci. 338, 468-473 (2009).

32. Efficient dispersion and exfoliation of single-walled nanotubes in 3-aminopropyltriethoxysilane and its derivatives; Z. Sun,* V. Nicolosi, S. Bergin and J. Coleman.* Nanotechnology 19, 485702 (2008).

31. High-yield production of graphene by liquid-phase exfoliation of graphite; Y. Hernandez, V. Nicolosi, M. Lotya, F. Blighe, Z. Sun, S. De, I. T. Mc Govern, B. Holland, M. Byrne, Y. K. Gun’KO, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari and J. N. Coleman.* Nat. Nanotech. 3, 563-568 (2008).

30. Large populations of individual nanotubes in surfactant-based dispersions without the need for ultracentrifugation; S. Bergin, V. Nicolosi, H. Cathcart, M. Lotya, D. Rickard, Z. Sun, W. Blau and J. N. Coleman.* J. Phys. Chem. C. 112, 972-977 (2008).

29. Quantitative evaluation of surfactant-stabilized single-walled carbon Nanotubes: Dispersion quality and its correlation with zeta potential; Z. Sun, V. Nicolosi, D. Rickard, S. Bergin, D. Aherne and J. N. Coleman.* J. Phys. Chem. C 112, 10692-10699 (2008).

28. Towards solutions of single-walled carbon nanotubes in common solventsS. Bergin, V. Nicolosi, P. Streich, S. Giordani, Z. Sun, A. Windle, P. Ryan, N. Niraj, Z. T. Wang, L. Carpenter, W. J. Blau, J. J. Boland, J. P. Hamilton,* J. N. Coleman.* Adv. Mater. 20, 1876-1881 (2008).

27. Coating carbon nanotubes with metal oxides in a supercritical carbon dioxide-ethanol solution; Z. Sun, X. R. Zhang, B. X. Han, Y. Y. Wu, G. M. An, Z. M. Liu,* S. D. Miao, and Z. J. Miao. Carbon 45, 2589-2596 (2007).

26. Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation; G. M. An, W. H. Ma, Z. Sun, Z. M. Liu,* B. X. Han, S. D. Miao, Z. J. Miao and K. L. Ding. Carbon 45, 1795-1801 (2007).

25. Supercritical carbon dioxide-assisted deposition of tin oxide on carbon nanotubes; Z. Sun, Z. M. Liu,* B. X. Han and G. M. An. Mater. Lett. 61, 4565-4568 (2007).

24. Synthesis of PtRu/carbon nanotube composites in supercritical fluid and their application as an electrocatalyst for direct methanol fuel cells; G. M. An, P. Yu, L. Q. Mao, Z. Sun, Z. M. Liu,* S. D. Miao, Z. J. Miao and K. L. Ding. Carbon 45, 536-542 (2007).

23. Decoration carbon nanotubes with Pd and Ru nanocrystals via an inorganic reaction route in supercritical carbon dioxide-methanol solution; Z. Sun, Z. M. Liu,* B. X. Han, S. D. Miao, Z. J. Miao and G. M. An. J. Colloid. Interf. Sci. 304, 323-328 (2006).

22. Microstructural and electrochemical characterization of RuO2/CNT composites synthesized in supercritical diethylamine; Z. Sun, Z. M. Liu,* B. X. Han, S. D. Miao, J. M. Du and Z. J. Miao. Carbon 44, 888-893 (2006).

21. Synthesis of ZrO2-carbon nanotube composites and their application as chemiluminescent sensor material for ethanol; Z. Sun, X. R. Zhang, N. Na, Z. M. Liu,* B. X. Han and G. M. An. J. Phys. Chem. B 110, 13410-13414 (2006).

20. Microwave-assisted synthesis of Pt nanocrystals and deposition on carbon nanotubes in ionic liquids; Z. M. Liu,* Z. Sun, B. X. Han, J. L. Zhang, J. Huang, J. M. Du and S. D. Miao. J. Nanosci. Nanotechnol. 6, 175-9 (2006).

19. Ru nanoparticles immobilized on montmorillonite by ionic liquids: A highly efficient heterogeneous catalyst for the hydrogenation of benzene; S. D. Miao, Z. M. Liu,* B. X. Han, J. Huang, Z. Sun, J. L. Zhang and T. Jiang. Angew. Chem. Int. Ed. 45, 266-269 (2006).

18. Synthesis of noble metal/carbon nanotube composites in supercritical methanol; Z. Sun, L. Fu, Z. M. Liu,* B. X. Han, Y. Q. Liu and J. M. Du. J. Nanosci. Nanotechnol. 6, 691-697 (2006).

17. Synthesis and characterization of TiO2-montmorillonite nanocomposites and their application for removal of methylene blue; S. D. Miao, Z. M. Liu,* B. X. Han, J. L. Zhang, X. Yu, J. M. Du and Z. Sun. J. Mater. Chem. 16, 579-584 (2006).

16. Synthesis of polyaniline nanofibrous networks with the aid of an amphiphilic ionic liquid; Z. J. Miao, Y. Wang, Z. M. Liu,* J. Huang, B. X. Han, Z. Y. Sun and J. M. Du. J. Nanosci. Nanotechnol. 6, 227-230 (2006).

15. Synthesis and characterization of ZnS-montmorillonite nanocomposites and their application for degrading eosin B; S. D. Miao, Z. M. Liu,* B. X. Han, H. W. Yang, Z. J. Miao and Z.Sun. J. Colloid. Interf. Sci. 301, 116-122 (2006).

14. A highly efficient chemical sensor material for H2S: alpha-Fe2O3 nanotubes fabricated using carbon nanotube templates; Z. Sun, H. Q. Yuan, Z. M. Liu, B. X. Han and X. R. Zhang.* Adv. Mater. 17, 2993-2997 (2005).

13. Carbon onions synthesized via thermal reduction of glycerin with magnesium; J. M. Du, Z. M. Liu,* Z. H. Li, B. X. Han,* Z. Sun and Y. Huang. Mater. Chem. Phys. 93, 178-180 (2005).

12. Synthesis and characterization of mesoporous aluminosilicate molecular sieve from K-feldspar; S. D. Miao, Z. M. Liu,* H. W. Ma, B. X. Han, J. M. Du, Z. Sun and Z. J. Miao. Micropor. Mesopor. Mat. 83, 277-282 (2005).

11. Facile route to synthesize multiwalled carbon nanotube/zinc sulfide heterostructures: Optical and electrical properties; J. M. Du, L. Fu, Z. M. Liu, B. X. Han,* Z. H. Li, Y. Q. Liu,* Z. Sun and D. B. Zhu. J. Phys. Chem. B 109, 12772-12776 (2005).

10. Solvothermal synthesis of mesoporous Eu2O3-TiO2 composites; Z. M. Liu,* J. L. Zhang, B. X. Han, J. M. Du, T. C. Mu, Y. Wang and Z. Sun. Micropor. Mesopor. Mat. 81, 169-174 (2005).

9. Fabrication of ruthenium-carbon nanotube nanocomposites in supercritical water; Z. Sun, Z. M. Liu,* B. X. Han,* Y. Wang, J. M. Du, Z. L. Xie and G. J. Han. Adv. Mater. 17, 928-932 (2005).

8. Phase-separation-induced micropatterned polymer surfaces and their applications; Y. Wang, Z. M. Liu,* B. X. Han,* Z. Sun, J. L. Zhang and D. H. Sun. Adv. Funct. Mater. 15, 655-663 (2005).

7. Facile synthesis of polyaniline nanofibers using chloroaurate acid as the oxidant; Y. Wang, Z. M. Liu,* B. X. Han,* Z. Sun, Y. Huang, G. Y. Yang. Langmuir 21, 833-836 (2005).

6. Carbon nanoflowers synthesized by a reduction-pyrolysis-catalysis route; J. M. Du, Z. M. Liu,* Z. H. Li, B. X. Han, Z. Sun and Y. Huang. Mater. Lett. 59, 456-458 (2005).

5. Replication of biological organizations through a supercritical fluid route; Y. Wang, Z. M. Liu,* B. X. Han,* Z. Sun, J. M. Du, J. L. Zhang, T. Jiang, W. Z. Wu and Z. J. Miao. Chem. Commun. 23, 2948-2950 (2005).

4. Fabrication and characterization of magnetic carbon nanotube composites; Z. Sun, Z. M. Liu,* Y. Wang, B. X. Han, J. M. Du and J. L. Zhang. J. Mater. Chem. 15, 4497-4501 (2005).

3. In situ Eu2O3 coating on the walls of mesoporous silica SBA-15 in supercritical ethane plus ethanol mixture; Z. M. Liu,* J. Q. Wang, J. L. Zhang, B. X. Han,* Y. Wang and Z. Sun. Micropor. Mesopor. Mat. 75, 101-105 (2005).

2. Synthesis of tubular graphite cones through a catalytically thermal reduction route; Z. Sun, Z. M. Liu,* J. M. Du, Y. Wang, B. X. Han and T. C. Mu. J. Phys. Chem. B 108, 9811-9814 (2004).

1. Carbon nanotube/poly(2,4-hexadiyne-1,6-diol) nanocomposites prepared with the aid of supercritical CO2; X. H. Dai, Z. M. Liu,* B. X. Han, Z. Sun, Y. Wang, J. Xu,* X. L. Guo, N. Zhao and J. Chen. Chem. Commun. 19, 2190-2191 (2004).

授权及申请专利

1. 刘志敏,韩布兴,孙振宇,高海翔,一种制备金属或金属氧化物/碳纳米管复合材料的方法,专利号: ZL200410046388.5,授权公告日: 2007-4-25;

2孙振宇,刘志敏,杨冠英,赵燕飞,谢芸,张宏晔,陶然婷,黄长靓,制备金属、金属氧化物或氢氧化物与碳纳米

管复合物的方法,专利号: 201010034506,授权公告日: 2011-10-5;

3. 孙振宇,陶亨聪,魏莹,丁晶晶,张玉勤,马滔, 一种制备二维材料的方法,专利号: ZL201610289696.3,授权

告日: 2019-08-16;

4. 孙振宇,陶亨聪,丁晶晶,张玉勤,马滔,高云楠,一种低温制备氮掺杂石墨烯以及氮掺杂石墨烯/金属氧化物纳

米复合材料的方法,专利号: 201610781107.3,授权公告日: 2018-07-24;

5. 孙振宇,杨家辉,郝磊端,徐亮,一种全铁水系液流电池负极电解液,申请号:2023118153848,申请日:2023-12-26,授权;

6. 孙振宇,杨家辉,周成喜,张家庆,郝磊端,徐亮,一种水系铁铈液流电池申请号:2024101715452,申请日:2024-02-06,授权

7. 孙振宇,詹新雨,郝磊端,一种基于金属有机框架材料的电化学重构制备镍单原子催化剂的方法,申请号:202310329615.8,申请日:2023-08-04;

8. 孙振宇,杨家辉,徐晓雯,郝磊端,徐亮, 一种水系铁基液流电池负极电解液的配置方法及其应用申请号:2024100149560,申请日:2024-01-04

9. 孙振宇,车航欣,杨家辉,郝磊端,徐亮, 一种通过还原法制备负载双金属颗粒的石墨毡电极材料的方法申请号:2024101682800,申请日:2024-02-06 

10. 孙振宇,杨家辉,周成喜,郝磊端,徐亮一种高容量的水系全铁液流电池负极电解液申请号:2024105795742,申请日:2024-06-06

11. 孙振宇,周成喜,杨家辉,王洁欣,一种高稳定铁基液流电池碱性负极电解液,申请号:202410727714.6,申请日:2024-06-06 ;

12. 孙振宇,杨家辉,周成喜,一种高溶解度的磺化改进水系铁基液流电池电解液,申请号:202411186908.6申请日:2024-08-27 ;

13. 孙振宇,周成喜,杨家辉,王洁欣,一种水系铁铈液流电池电解液及制备方法,申请号:2024111869334申请日:2024-08-27 ;

14. 孙振宇,周成喜,杨家辉,王洁欣,一种铁基液流电池负极电解液及其制备方法申请号:202411338106.2申请日:2024-09-25

15. 孙振宇,杨家辉,周成喜,张家庆,一种低成本的中性水系有机铁铈液流电池,申请号:202411351554.6申请日:2024-09-26;

16. 孙振宇,周成喜,杨家辉,王洁欣,一种高稳定铁铈液流电池及电解液的制备方法,申请号:202411434160.7申请日:2024-10-14;

17. 孙振宇,周成喜,杨家辉,程远福,一种新型铕铈液流电池电解液的制备方法,申请号:;申请日:;


教改论文

1. 钙钛矿/有机串联叠层光伏器件的制备及性能表征推荐一个大学化学研究型综合实验谭占鳌,* 李明华, 王文立, 孙振宇.《大学化学》(2024). 2405044. https://www.dxhx.pku.edu.cn/CN/Y2024/V/I/2405044.

2. L. Hao, Z. Sun,* D. Zhao, Z. Tan. (2024). To be submitted.