团队代表性成果
获奖
1. 樊宇,激光氮化与熔覆一体化设备及关键技术,江苏省科技三等奖,2017.
2. 陈正,非平衡金属材料固态相变动力学理论及应用研究,陕西省高校科技一等奖,2017.
3. 樊宇,激光氮化与熔覆一体化设备及关键技术,徐州市科技二等奖,2018.
4. 陈正,激光熔覆氮化一体化设备与技术,淮海科技进步三等奖,2018.
5. 陈正,材料专业“双创”实践能力“学训赛交融递进式”培养模式研究,中国矿业大学校教学成果一等奖,2017.
6. 陈正,材料专业“双创”实践能力“学训赛”交融培养模式研究与实践,全国煤炭行业教育教学成果奖三等奖.
7. 孙智,教育部二等奖
培训项目
1. 国际焊工
国际焊工(International Welder)是指按国际统一制定、颁布的焊工教育、培训规程完成培训后按该规程的规定考试通过的焊工。
焊接出口到欧洲市场产品的焊工必须具有欧洲授权认证机构出具的国际焊工证书。
2. 德国焊接大师
德国焊接大师是依据DVS 1157针对熟练的焊工,旨在对其深度培训后成为焊接大师、焊接工长、焊接技师或具有焊接大师级别的管理人员。这些都是在焊接领域的各项活动中需委以重任并担当要责的角色。
目前为止,中国地区仅有极少数人具备德国焊接大师资质。
项目
1. 陈正,基于高熵晶界修饰热-动力学的纳米晶高温稳定化研究, 国家自然科学基金面上项目(51771226),2018.1-2021.12
2. 陈正,设计思维驱动下的新工科人才培养模式匹配结构研究,江苏教育科学“十三五“”规划重点课题(6V184039),2018-07-01-2020-12-31.
3. 陈正,国家自然科学基金(51101169)“高稳定Fe基纳米晶的可控制备及其热稳定机制研究”,2012.1~2014.12
4. 陈正,高性能纳米结构材料一体化设计及溶质共偏聚机理研究,江苏省自然科学基金(BK20141126),2014.7-2017.6
5. 陈正,高熵合金耦合强化作用控制及纳米转变机理研究,学科前沿方向研究专项(2015XKQY01),2015-2018
6. 陈正,江苏省博士后科学基金,1401052B,弱偏析纳米合金的高温稳定性设计及溶质共偏聚机理研究,项目主持人,3万元,2014.7-2016.6
7. 陈正,中国博士后科学基金第54批面上资助,一等资助(2013M540475),“高稳定块体Fe基纳米晶的可控制备及其热稳定机制研究” 2013.10~2015.10
8. 沈承金、陈正,面向突变截面/复杂表面机械零件超音速喷涂WC涂层增材制造关键技术,江苏省重点研发项目(BE2018061) 2018.9-2021.8
9. 陈正,多元合金纳米晶稳定化中晶界共偏析热-动力学研究,西北工业大学凝固技术国家重点实验室开放课题(SKLSP201818),2018.6-2020.5
10. 陈正,纳米多元单相合金中溶质共偏聚及与晶界交互机理研究2014QNA07,10万, 2014-09-01-2017-9-01,中央高校科研业务费
11. 陈正,高熵合金耦合强化作用控制及纳米转变机理研究, 中国矿业大学学科前沿专项基金,2015.9~2018.9, 项目主持人
12. 陈正,西北工业大学开放课题(SKLSP201119),纳米Fe基合金的极端非平衡凝固及热稳定性研究,2011.01-2013.12
13. 陈正,金属基碳化物材料的矿山机械耐磨损抗腐蚀零部件研究,中国矿业大学盱眙矿山装备与材料研发中心创新基金,CXJJ201305
14. 樊宇,中央高校基本科研业务费专项课题《应用激光处理技术集成解决第四代LVAD悬浮叶片寿命的研究》,(2014QNA09)
15. 樊宇,江苏省自然科学基金项目《激光氮化气体与材料表面交互作用及气孔防止研究》,(2015年),(BK20150205)
16. 樊宇,江苏省产学研前瞻性联合研究项目《激光氮化技术及成套装备研究》,(BY2015023-02),(2015年9月至今)
17. 樊宇,江苏省博士后科研资助计划《激光氮化气体与材料表面交互作用及气孔防止研究》,(1501029A)
18. 樊宇,中国博士后科学基金第59批面上资助《一氧化氮条件下激光氮化层元素交互作用与性能调控机制》,(2016M591953)
19. 樊宇,江苏省博士后科研资助计划,《长寿命罐式集装箱激光熔覆氮化关键技术》,(2018K010A)
20. 樊宇,徐州市科技计划面上项目,《高熵合金的激光熔覆+氮化的多尺度氮化物析出行为及强化机制》,(KC18072)
21. 樊宇,中国博士后科学基金第64批面上资助《活性元素诱发高熵合金激光熔覆氮化涂层制备及强化机理》
22. 樊宇,江苏省“六大人才高峰”第十五批高层次人才项目《激光氮化与熔覆一体化设备及关键技术》(GDZB-032)
23. 樊宇,江苏省科协青年科技人才托举工程资助培养项目
24. 樊宇,“龙城英才计划”第九批领军人才优先支持项目《激光氮化工艺及成套装备的产业化》,100万
25. 樊宇,江苏省“双创计划”双创博士类,15万
26. 樊宇,常州中机天正专项课题《激光氮化对矿山机械耐磨部件的研究与应用》,52万
27. 樊宇,苏州天沃科技股份有限公司《化工机械类产品激光焊接专用设备的研发与产业化》,15万
28. 樊宇,常州天正工业发展股份有限公司《等离子激光氮化技术与装备研究》,12万
29. 樊宇,兖矿华东重工有限公司,《激光熔覆合金粉末及工艺的研究》,10万
30. 樊宇,江苏维特焊业专项课题《高铬铸铁药芯焊丝堆焊层工艺优化及耐磨性研究》, 12万
论文
[1] S. Wang, Z. Chen*, L.C. Feng, Y.Y. Liu, P. Zhang, Y.Z. He, Q.Q. Meng, J.Y. Zhang, Nano-phase formation accompanying phase separation in undercooled CoCrCuFeNi-3 at. % Sn high entropy alloy, Materials Characterization, 144 (2018) 516-521.
[2] Zhang Y, Z. Chen*, D.D. Cao, J.Y. Zhang, P. Zhang et al. Concurrence of spinodal decomposition and nano-phase precipitation in a multi-component AlCoCrCuFeNi high-entropy alloy. J Mater Res Technol. 2018. https://doi.org/10.1016/j.jmrt.2018.04.020
[3] Y. Fan, A.M. Liu, Z. Chen, P.Z. Li, and C.H. Zhang, Dynamic Analysis of Recalescence Process and Interface Growth of Eutectic Fe82B17Si1 Alloy, Journal of Materials Engineering and Performance, 2018, 27 (25) :1-8.
[4] Z. Chen, Y. Zhang, S. Wang, J.Y. Zhang, P. Zhang, Microstructure and mechanical properties of undercooled Fe80C5Si10B5 eutectic alloy, Journal of Alloys and Compounds 747(2018) 846-853.
[5] 张金勇,李金山,陈正,孟庆坤,张平,沈承金,沈宝龙, Sun Fan, 具有高强高塑性和良好加工硬化行为的新型亚稳β钛合金设计及发展, 稀有金属材料与工程 47(9) 2018 2787-2792(SCI/EI/ESI)
[6] J.Y. Zhang, J.S. Li, Z. Chen, Q.K. Meng, F. Sun, B.L. Shen, Microstructural evolution of a ductile metastable b titanium alloy with combined TRIP/TWIP effects, Journal of Alloys and Compounds 699 (2017) 775-782. 3.133
[7] Qing Tao, Jian Wang, Liming Fu, Zheng Chen, Chengjin Shen, Dekun Zhang, Zhi Sun, Ultrahigh hardness of carbon steel surface realized by novel solid carburizing with rapid diffusion of carbon nanostructures, Journal of Materials Science & Technology 33 (2017) 1210–1218(SCI/EI/ESI)
[8] Z. Chen, T. Liang, Y. Zhang, L.C. Feng, X.Q.Yang, Y. Fan, TEM investigations of recrystallization in rapidly solidified Ni-Fe-Pb ternary alloy, Materials Characterization, 127 (2017) 73–76. 2.714
[9] Tao Liang, Zheng Chen, Xiaoqin Yang, Jinyong Zhang, Ping Zhang, The thermodynamic stability induced by solute co-segregation in nanocrystalline ternary alloys, International Journal of Materials Research, 108 (6), 2017, 435-440. 0.681
[10] Tao Qing, Wang Cong, Shen Chengjin, Liu Jianyang, Chen Zheng, Lai Wei, Microstructures Evolution and Properties of Fe-based/Co-WC Cladding Coating by Plasma Cladding, 44(9), 2015, 2245-2249.
[11] Z. Chen, Y.Y. Tang, Q. Tao, Q. Chen, T. Liang, The mechanism of grain growth and thermal stability in Ni-1 at.% Pb alloy, Journal of Alloys and Compounds, 662 (2016) 628-633.
[12] Z. Chen, Q. Chen, C.J. Shen, F. Liu, Grain growth and thermal stability accompanying recrystallization in undercooled Ni-3at.%Sn alloy, Journal of Alloys and Compounds, 646 (2015) 983-989.
[13] R.X. Cui, Z. Chen, Y.Q. Wang, Y. Fan, F. Liu, C.H. Zhang, Analysis of activation energy evolution in thermo-kinetic process of nano-scale grain growth, Journal of Alloys and Compounds 646 (2015) 412-416.
[14] Q. Chen, Z. Chen, F. Liu, R.X. Cui, T. Liang, The investigation of recrystallization developed in the largely undercooled Ni–3 at.% Sn alloy, Journal of Alloys and Compounds, 638(25) (2015) 109–114.
[15] Z. Chen, X.Q. Yang, F. Liu, R.X. Cui, C.H. Zhang, Grain growth and thermal stability in nanocrystalline Fe-B alloys prepared by melt spinning, International Journal of Materials Research, 2015, 106 (5) 488-493.
[16] Z. Chen, Q. Chen, F. Liu, X.Q. Yang, Y. Fan, C.H. Zhang, A.M. Liu, The influence of solid-state grain growth mechanism on the microstructure evolution in undercooled Ni-10at.%Fe alloy, Journal of Alloys and Compounds, 622 (2015) 1086–1092.
[17] Y. Fan, Z. Chen, C. H. Zhang, A comparison of microstructure and mechanical properties of welded thin Ti6Al4V with three different types of laser, MATERIALS RESEARCH INNOVATIONS, 19 (2015) S187-S192.
[18] Zheng Chen, Yanan Yang, et al, Recalescence effect simulation and microstructure evolution of undercooled Fe82B17Si1 alloy, Acta Metallurgica Sinica, 50(7) (2014) 795-801.
[19] Z. Chen, Y.Y. Tang, Q. Chen, R.X. Cui, F. Liu, Z.H. Zhang, The interrelated effect of initial melt undercooling, solute trapping and solute drag on the grain growth mechanism of as-solidified Ni-B alloys, Journal of Alloys and Compounds, 610 (2014) 561-566
[20] Tao Liang, Zheng Chen, Xiaoqin Yang, Ning Liu, Yanan Yang, Chenlong Duan, Yuemin Zhao, Mechanism of grain refinement and coarsening in undercooled Ni–Fe alloy, International Journal of Materials Research, 105 (2014) E 854-860.
[21] Z. Chen, F. Liu, X.Q. Yang, C.J. Shen, Y.M. Zhao, A thermokinetic description of nano-scale grain growth under dynamic grain boundary segregation condition, Journal of Alloys and Compounds, 608 (2014) 338–342
[22] Yanan Yang, Zheng Chen, et al, Research on grain refinement and recrystallization mechanism in undercooled Ni-1at.%Fe alloy, Rare Metal Materials and Engineering, 2014 43(2) 336-340.
[23] 张 乐,陈 正,杨亚楠,唐跃跃,新型Al-Ti-B-Re中间合金对工业纯铝细化工艺设计及细化机理研究,材料导报,27(9) 2013 100-103.
[24] Z. Chen, F. Liu, X.Q. Yang, Y.Z. Chen, C.L. Yang, G.C. Yang, Y.H. Zhou, The interrelated effect of activation energy and grain boundary energy on grain growth in nanocrystalline materials, International Journal of Materials Research (2013) 104 (9); 1–6. (SCI: 2013 241VP, EI: 20114214440946)
[25] Yang, Xiaoqin; Xu, Shaoping; Chen, Zheng; Liu, Jiongtian Improved nickel-olivine catalysts with high coking resistance and regeneration ability for the steam reforming of benzene REACTION KINETICS MECHANISMS AND CATALYSIS, 108(2), pp 459-472, 2013/4. 期刊论文, SCI, 1. 104(2012)
[26] Zheng Chen, Feng Liu, Xiaoqin Yang, Chengjin Shen, A thermokinetic description of nanoscale grain growth: Analysis of the activation energy effect, Acta Materialia (2012) 60; 4833–4844 (SCI: 2012 987KG, EI: 20123015272291) IF: 5.301
[27] Zheng Chen, Feng Liu, Xiaoqin Yang, Yu Fan, Chengjin Shen, Analysis of grain growth process in melt spun Fe–B alloys under the initial saturated grain boundary segregation condition, Journal of Alloys and Compounds (2012) 510; 46– 53 (SCI: 2012 841RX, EI: 20114214440946 12830833) IF: 2.2890
[28] Zheng Chen, Feng Liu, Xiaoqin Yang, Chengjin Shen, Yu Fan, Analysis of controlled-mechanism of grain growth in undercooled Fe-Cu alloy, Journal of Alloys and Compounds (2011) 509; 7109–7115 (SCI: 2011 766OM, EI: 20112114009342 ) IF: 2.2890
[29] Zheng Chen, Feng Liu, Xiaoqin Yang, Ning Liu, Chengjin Shen, The effect of non-equilibrium δ/γ transition on the formation of metastable “dendrite core” in undercooled Fe–Cu alloy, Journal of Crystal Growth (2012) 354; 174–180 (SCI: 2013 976SQ, EI: 20123115294337) IF: 1.755
[30] Zheng Chen, Feng Liu and Chengjin Shen, A physical explanation of plateau in velocity vs. undercooling curve using a undercooled dendrite growth model , Advanced Materials Research 189-193 (2011) 3815-3818 (EI: 20111113749791, ISTP收录)
[31] Zheng Chen, Feng Liu, Chengjin Shen, Yu Fan, Comparison between kinetic and thermodynamic effects on grain growth in nano-scale materials , Advanced Materials Research 233-235 (2011) 2439-2442 (EI 20112414059352 12434077, ISTP收录)
[32] *Fan, Yu, Shipway, Philip, Tansley, Geoff, Chen, Zheng Study of effect on tensile stress test from distortion of fibre laser welded Ti6Al4V using FEA International Conference on Advanced Design and Manufacturing Engineering (ADME 2011), 2011/9/16-2011/9/18, pp 1889-1894, Guangzhou, PEOPLES R CHINA, 2011. 会议论文
[33] Z. Chen, F. Liu, K. Zhang, Y.Z. Ma, G.C. Yang, Y.H. Zhou, Description of grain growth in metastable materials prepared by non-equilibrium solidification. Journal of Crystal Growth, 2010, 313: 81~93. (SCI: 2010 695LV EI: 11664044) IF:1.534
[34] Z. Chen, H.F. Wang, F. Liu, W. Yang, Effect of nonlinear liquidus and solidus on the dendrite growth in bulk undercooled melts. Transactions of Nonferrous Metals Society of China, 2010, 20, 490~494.
[35] X.Q. Yang, Z. Chen, W. Yang, Analysis of thermal stability after occurrence of absolute solute trapping in undercooled Co-Cu alloy, International Journal of Materials Research (2013) 104; 783–788. (SCI,EI)
[36] K. Zhang, Z. Chen, F. Liu, C.L. Yang, Thermodynamic state and kinetic process, analysis of grain boundary excess in nano-scale grain growth. J. Alloys and Compounds, 2010, 501: L4~L7. IF:2.135, SCI, EI.
[37] N. Liu, F. Liu, W. Yang, Z. Chen, G.C. Yang, Movement of minor phase in undercooled immiscible Fe–Co–Cu alloys, Journal of Alloys and Compounds 551 (2013) 323–326, SCI, EI.
[38] N. Liu, F. Liu, Z. Chen, W. Yang, G.C. Liquid-phase Separation in Rapid Solidification of Undercooled Fe-Co-Cu Melts, J. Mater. Sci. Technol. 2012, 28(7), 622-625. SCI, EI.
[39] Z. Chen, F. Liu, H. F. Wang, W. Yang, G. C. Yang, Y. H. Zhou, A thermokinetic description for grain growth in nanocrystalline materials. Acta Materialia, 2009, 57(5): 1466~1475. IF:3.729
[40] Z. Chen, F. Liu, W. Yang, H. F. Wang, G. C. Yang, Y. H. Zhou, Influence of grain boundary energy on the grain size evolution in nanocrystalline materials. Journal of Alloys and Compounds, 2009, 475: 893~897. IF:2.135
[41] Z. Chen, F. Liu, H. F. Wang, W. Yang, G. C. Yang, Y. H. Zhou, Formation of single-phase supersaturated solid solution upon solidification of highly undercooled Fe-Cu immiscible system. Journal of Crystal Growth, 2008, 310: 5385~5391. IF:1.534
[42] Z. Chen, F. Liu, H. F. Wang, G. C. Yang, Y. H. Zhou, The effect of kinetics on the stability under non-equilibrium condition. Materials Science and Engineering A, 2006, 433: 182~189. IF:1.9
[43] Z. Chen, F. Liu, G. C. Yang, Y. H. Zhou, Influence of grain boundary energy on the grain size evolution in nanocrystalline materials. Journal of Physics: Conference Series, 2009, 152: 012086.
[44] F. Liu, Z. Chen, H.F. Wang, C.L. Yang, W. Yang, G.C. Yang, Thermodynamics of nano-scale grain growth. Materials Science and Engineering A, 2007, 457: 13~17.
[45] H.F. Wang, F. Liu, Z. Chen, G.C. Yang, Y.H. Zhou, Analysis of non-equilibrium dendrite growth in bulk undercooled alloy melt, model and application, Acta Materialia, 2007, 55: 497~506.
[46] H.F. Wang, F. Liu, Z. Chen, W. Yang, G.C. Yang, Y.H. Zhou, Effect of non-linear liquidus and solidus inundercooled dendrite growth: A comparative study in Ni0.7at.%B and Ni1at.%Zr system. Scripta Materialia 2007, 57: 413C41.
[47] H. F. Wang, F. Liu, Z. Chen, W. Yang, Solute trapping model based on solute drag treatment, Trans. Nonferrous Met. Soc. China 20 (2010) 877~881, SCI, EI.
[48] F. Liu, H.F. Wang, Z. Chen, W. Yang, G.C. Yang, Determination of activation energy for crystallization in amorphous alloys. Materials Letters, 2006, 60: 3916~3921.
[49] 王海丰, 刘峰, 陈正, 杨根仓, 周尧和, 非平衡凝固条件下耦合弛豫效应的M-S理论, 中国科学E, 37. 5: 674~685.
[50] H.F. Wang, F. Liu, Z. Chen, Dendrite growth model incorporating non-linear liquidus and solidus in bulk undercooled melts, Journal of Central South University of Technology, 2007, 14: 94~100.
[51] H.F. Wang, F. Liu, W. Yang, Z. Chen, G.C. Yang, Y.H. Zhou, Solute trapping model incorporating diffusive interface. Acta Materialia, 2008, 56(4):746~753.
[52] H.F. Wang, F. Liu, W. Yang, Z. Chen, G.C. Yang, Y.H. Zhou, An extended morphological stability model incorporating non-linear liquidus and solidus. Acta Materialia, 2008, 56(11): 2592~2601.
[53] F. Liu, G.C. Yang, H.F. Wang, Z. Chen, Y.H. Zhou. Nano-scale grain growth kinetics, Thermochimica Acta, 2006, 443: 212~216
[54] Li Peizhi, Fan Yu*, Zhang Chonghao, Zhu Zhiyuan, Tian Wenteng, Liu Anmin, Research on heat source model and weld profile for fiber laser welding A304 stainless steel thin sheet, Advances in Materials Science and Engineering, 2018, Article ID 5895027, 1-12. DOI:org/10.1155.2018/5895027
[55] X.Jia, X.Jie, Z.Liu, S.Huang, Y.Fan, Z.Sun, A new method to estimate heat source parameters in gas metal arc welding simulation process, Fusion Engineering and Design, 2014.1. 89(1): 40-48.
[56] Y.Fan, W.Tian, Y.Guo, Z.Sun, J.Xu, Relationships among the Microstructure, Mechanical Properties, and Fatigue Behavior in Thin Ti6Al4V, Advances in Materials Science and Engineering, 2016, Article Number:7278267, 1-9
专利
[1] 一种激光填丝焊焊枪调节机构,201611175147.X
[2] 一种激光-MIG复合焊减少高碳钢焊接裂纹的方法,201611175251.9
[3] 一种减少铝合金焊接气孔的激光-电弧复合焊接方法,201611175130.4
[4] 激光氮化装置,张翀昊,樊宇,倪春阳
[5] 激光氮化设备,201620825690.9
[6] 四轴联动激光焊接装置,ZL201520972186.7(实用新型),徐杰;樊宇;卓小敏;李鹏鹏;张现虎;田文腾;郭跃;冯灿
[7] 一种专用于连续式光钎激光合金化的陶瓷合金粉末,201510266306.6
[8] 一种以薄板搭接代替粉末激光熔覆的激光焊接工艺,ZL201510209152.7,樊宇;江利;刘阳;魏婷;田文腾;张现虎;郭跃;曹刚;李沛智
[9] 一种对金属厚板的激光切割工艺,201410806097.5,2014.12.22
[10] 一种用于连续式光纤激光表面合金化的钴基金属合金粉末,ZL201410629823.0,樊宇;徐杰;范贺良;陈正;田文腾;郭跃
[11] 一种提高激光氮化效果的气体分压装置,2014100065557.3,2014.2.26
[12] 一种提高激光氮化效果的电磁搅拌熔池装置,ZL201410065558.8,2014.2.26,樊宇;徐杰;浦晓峰;范贺良;陈正
[13] 一种通过双脉冲阶梯波形激光器提高激光氮化效果的方法,201410065556.9,2014.2.26
[14] 一种专用于连续式光纤激光熔覆的钴基金属合金粉末,201310589602.0,2013.11.20
[15] 一种通过高能激光提高圆筒形压力容器外筒壁性能的方法,201310302197.X,2013.7.18
[16] 自动对位激光拼焊系统(实用新型),ZL201320428760.3,2013.7.18,陈孝山;曹毅;王小红;樊宇;浦晓峰;陆星烨