52676
当前位置: 首页   >  成果及论文
成果及论文



[1] X. Du, X. He, L. Zhao, H. Chen, W. Li, W. Fang, W. Zhang, J. Wang, H. Chen, TiO2 hierarchical porous film constructed by ultrastable foams as photoanode for quantum dot-sensitized solar cells, Journal of Power Sources, 332 (2016) 1-7.

[2] X. Du, L. Zhao, H. Chen, W. Qu, Z. Lei, Y. Li, S. Li, Synthesis and properties of multilayered films foams, Colloids & Surfaces A Physicochemical & Engineering Aspects, 436 (2013) 599-603.

[3] X. Du, L. Zhao, X. He, H. Chen, W. Li, W. Fang, TiO2 hierarchical pores/nanorod arrays composite film as photoanode for quantum dot-sensitized solar cells, Journal of Energy Chemistry, 30 (2019) 1-7. 

[4] Wang H, He X, Zhao L, Li W, Chen H, Fang W, et al, Hematite nanorod arrays top-decorated with an MIL-101 layer for photoelectrochemical water oxidation, Chemical Communications, 2019, 76. 

[5] X. Du, L. Zhao, X. He, H. Chen, W. Fang, W. Li, Ultra-stable aqueous foams with multilayer films stabilized by 1-dodecanol, sodium dodecyl sulfonate and polyvinyl alcohol, Chemical Engineering Science, 160 (2017) 72-79.

[6] X. Du, L. Zhao, X. He, X. Wang, W. Qu, H. Chen, H. Chen, J. Wang, Z. Lei, A novel method based on ultrastable foam and improved gelcasting for fabricating porous mullite ceramics with thermal insulation–mechanical property trade-off, Journal of Porous Materials, 23 (2016) 381-388.

[7] X. Du, L. Zhao, H. Xiao, F. Liang, H. Chen, X. Wang, J. Wang, W. Qu, Z. Lei, Stability and shear thixotropy of multilayered film foam, Colloid and Polymer Science, 292 (2014) 2745-2751.

[8] Huang Z, Chen H, Zhao L, He X, Du Y, Fang W, et al, Constructing g-C3N4 quantum dots modified g-C3N4/GO nanosheet aerogel for UV-Vis-NIR driven highly efficient photocatalytic H2 production, International Journal of Hydrogen Energy, 2019, 44(59): 31041-31052.

[9]  X. Du, W. Li, L. Zhao, X. He, H. Chen, W. Fang, Electron transport improvement in CdSe-quantum dot solar cells using ZnO nanowires in nanoporous TiO2 formed by foam template, Journal of Photochemistry and Photobiology A: Chemistry, 371 (2019) 144-150.

[10] Sun Z, Fang W*, Zhao L, et al, 3D porous Cu-NPs/g-C3N4 foam with excellent CO2 adsorption and Schottky junction effect for photocatalytic CO2 reduction, Applied Surface Science, 2020, 504: 144347.

[11] Sun Z, Fang W*, Zhao L, et al, g-C3N4 foam/Cu2O QDs with excellent CO2 adsorption and synergistic catalytic effect for photocatalytic CO2 reduction, Environment international, 2019, 130: 104898.

[12] Fang W, Zhao L, Chen H, et al, Graphene oxide foam fabricated with surfactant foaming method for efficient solar vapor generation, Journal of Materials Science, 2019, 54(19): 12782-12793.

[13] Huang Z, Chen H, Zhao L, Fang W, et al, In Suit Inducing Electron-donating and Electron-withdrawing Groups in Carbon Nitride by One-step NH4Cl-assisted Route: A Strategy for High Solar Hydrogen Production Efficiency, Environment International, 2019, 126: 289-297.

[14] Fang W, Zhao L, He X, et al, Carbonized rice husk foam constructed by surfactant foaming method for solar steam generation, Renewable Energy, 2020, 151:1067-1075.

[15] Tian P, He X, Zhao L, Li W, Fang W, et al, Enhanced charge transfer for efficient photocatalytic H2 evolution over UiO-66-NH2 with annealed Ti3C2Tx MXenes, International Journal of Hydrogen Energy, 2019, 44(2):788-800.

[16] Xin Z, Fang W*, Zhao L, et al, N-doped carbon foam constructed by liquid foam with hierarchical porous structure for supercapacitor, Journal of Porous Materials, 2018:1-9.

[17] Gong C, Li W, Lei Y, et al. Interfacial engineering of ZIF-67 derived CoSe/Co (OH) 2 catalysts for efficient overall water splitting[J]. Composites Part B: Engineering, 2022, 236: 109823.