16952
当前位置: 首页   >  成果及论文
成果及论文

学术专著

(1)     Xianmin Zhang, Outlook and Challenges of Nano Devices, Sensors, and MEMS, Springer, 出版时间2017.4.

(2)     Xianmin Zhang, et al., Ferroelectrics and Their Applications, InTech, 出版时间2018.10.

 

代表性学术论文:

电子学材料与电子器件:

(1)    Junwei Tong, et al., Interfacial antiferromagnetic coupling and high spin polarization in metallic phthalocyaninesPhysical Review B, 103, 024435 (2021). 

(2)    Xianmin Zhang, et al., Interface Hybridization and Spin Filter Effect in Metal-free Phthalocyanine Spin Valves, Physical Chemistry Chemical Physics (2020), https://doi.org/10.1039/D0CP00651C.

(3)    Junwei Tong, et al., Defect states dependence of spin transport in iron phthalocyanine spin valves, Physical Review B, 99, 054406 (2019). 

(4)     Xianmin Zhang, et al., Observation of a large spin-dependent transport length in organic spin valves at room temperature, Nature Communications, 4, 1392 (2013).

(5)    Xianmin Zhang, et al., Room temperature magnetoresistance effects in ferroelectric poly(vinylidene fluoride) spin valves, Journal of Materials Chemistry C, 5, 5055 (2017);

(6)    Xianmin Zhang, et al., Spin conserved electron transport behaviors in fullerenes (C60 and C70) spin valves, Carbon, 106, 202 (2016);

(7)    Xianmin Zhang, et al., Magnetoresistance Effect in Rubrene-Based Spin Valves at Room Temperature, ACS Applied Materials & Interfaces, 7, 4685 (2015).


功能材料的第一性原理计算与设计:

(1)    Junwei Tong, et al., High and reversible spin polarization in a collinear antiferromagnet (Editor's Featured Article), Applied Physics Review (original article). 7, 031405 (2020);  https://aip.scitation.org/doi/10.1063/5.0004564. 美国物理联合会(American Institute of Physics)选为科学之光(Scilight),并对此成果撰写专题述评,链接https://aip.scitation.org/doi/10.1063/10.0001675.

(2) Yanzhao Wu, et al., N-type diamond semiconductor induced by co-doping selenium and boron, Computational MaterialsScience.196, 110515 (2021).

(3) Fengyuan Zhang, et al., Interfacial magnetic coupling and orbital hybridization for D022-Mn3Ga/Fe films. Physca Scripta. 96, 075804  (2021). 

(4)    Yuxuan Feng, et al., Effect of Ta capping layer on the magnetic coupling oscillation of L10-MnGa/Co/Ta films. Journal of Magnetism and Magnetic Materials (2020). https://doi.org/10.1016/j.jmmm.2020.166994.

(5)    Xianmin Zhang, et al., Interfacial magnetic coupling and the confinement effect of spin electrons for τ-MnAl/Ni multilayers, Physics Letters A, 384,126096 (2020).

(6)    Junwei Tong, et al., Unexpected magnetic coupling oscillations for L10-MnGa/Co(Fe) films induced by quantum wells, Physical Review B, 97, 184426 (2018).

(7)    Junwei Tong, et al., Unusual interfacial magnetic interactions for s-MnAl with Fe(Co) atomic layers, Physical Chemistry Chemical Physics, 21, 2443 (2019);

(8)    Junwei Tong, et al., Magnetic coupling in L10-MnGa/Ni films, Materials Research Express, 6, 116414 (2019).

 

新型半导体材料设计、薄膜取向生长及新能源应用:

(1)  Liuxia Ruan, et al., Magnetic relaxation dependences on the central ions for Ln (Ln = Tb, Dy, Er)phthalocyanine, Applied Physics Letters. 117, 072406 (2020). 被Editor选为Featured Article.

(2) Liuxia Ruan, et al., Magnetic Improvement and Relaxation Mechanism of the Tb-Phthalocyanine Single-Molecule Magnet by Absorbing CH2Cl2 Molecules, 

The Journal of Physical Chemistry C. 125, 10165−10172 (2021).

(3) Liuxia Ruan, et al., Novel Synthesis with a High Yield and Magnetic Modification of Tb-Phthalocyanine Molecules, European Journal of Inorganic Chemistry (2020).  https://doi.org/10.1002/ejic.202000253.

(4)    Tingting Liu, et al., Facile synthesis and characterization of crystalline iron phthalocyanine, Materials Letters. 237, 319 (2019).

(5)    Xiaowei Ai, et al., Phase modification of copper phthalocyanine semiconductor by converting powder to thin film, Applied Surface Science, 428, 788 (2018).

(6)    Xianmin Zhang, et al., Interface effects on perpendicular magnetic anisotropy for molecular-capped cobalt ultrathin films, Applied Physics Letters, 99,162509 (2011);

(7)    Xianmin Zhang, et al., Enhanced red phosphorescence in nanosized CaTiO3: Pr3+ phosphors, Applied Physics Letters, 90, 151911(2007);

(8)    Rui Zhang, et al., α-Fe2O3/BiFeO3 composites as visible-active photocatalysts and their optical response mechanism, Journal of Physics and Chemistry of Solids. 141, 109329(2020);

(9)    Jiaxin Lin, et al., Pt-doped a-Fe2O3 photoanodes prepared by a magnetron sputtering method for photoelectrochemical water splitting, Materials Research Bulletin. 91, 214(2017).

(10)  Rui Zhang, et al., Enhanced photocatalytic activity and optical response mechanism of porous graphitic carbon nitride (g-C3N4) nanosheets, Materials Research Bulletin. 140, 111263(2021).