1. Yin, Y. C.; Yang, J. T.; Luo, J. D.; Lu, G. X.; Huang, Z.; Wang, J. P.; Li, P.; Li, F.; Wu, Y. C.; Tian, T.; Meng, Y. F.; Mo, H. S.; Song, Y. H.; Yang, J. N.; Feng, L. Z.; Ma, T.; Wen, W.; Gong, K.; Wang, L. J.; Ju, H. X.; Xiao, Y.; Li, Z.; Tao, X.; Yao, H. B., A LaCl3-based lithium superionic conductor compatible with lithium metal. Nature 2023, 616, 77-83.
2. Yin, Y. C.; Wang, Q.; Yang, J. T.; Li, F.; Zhang, G.; Jiang, C. H.; Mo, H. S.; Yao, J. S.; Wang, K. H.; Zhou, F.; Ju, H. X.; Yao, H. B., Metal chloride perovskite thin film based interfacial layer for shielding lithium metal from liquid electrolyte. Nature Communications 2020, 11, 1761.
3. Yin, Y. C.; Yu, Z. L.; Ma, Z. Y.; Zhang, T. W.; Lu, Y. Y.; Ma, T.; Zhou, F.; Yao, H. B.; Yu, S. H., Bio-inspired low-tortuosity carbon host for high-performance lithium-metal anode. National Science Review 2019, 6, 247-256.
4. Mo, H.; Yin, Y. C.; Luo, J. D.; Yang, J. T.; Li, F.; Huang, D. M.; Zhang, H.; Ye, B.; Tian, T.; Yao, H. B., Lead-Free Solid-State Organic-Inorganic Halide Perovskite Electrolyte for Lithium-Ion Conduction. ACS Applied Materials & Interfaces 2022, 14, 17479-17485.
5. Wang, L.; Ren, N.; Jiang, W.; Yang, H.; Ye, S.; Jiang, Y.; Ali, G.; Song, L.; Wu, X.; Rui, X.; Yao, Y.*; Yu, Y.*, Tailoring Na+ Solvation Environment and Electrode-Electrolyte Interphases with Sn(OTf)2 Additive in Non-flammable Phosphate Electrolytes towards Safe and Efficient Na-S Batteries. Angewandte Chemie International Edition 2024, e202320060.
6. Wang, L.; Ren, N.; Yao, Y.; Yang, H.; Jiang, W.; He, Z.; Jiang, Y.; Jiao, S.; Song, L.; Wu, X.; Wu, Z. S.*; Yu, Y.*, Designing Solid Electrolyte Interfaces towards Homogeneous Na Deposition: Theoretical Guidelines for Electrolyte Additives and Superior High-Rate Cycling Stability. Angewandte Chemie International Edition 2023, 62, e202214372.
7. Wang, L.; Wang, H.; Zhang, S.; Ren, N.; Wu, Y.; Wu, L.; Zhou, X.; Yao, Y.; Wu, X.; Yu, Y.*, Manipulating the Electronic Structure of Nickel via Alloying with Iron: Toward High-Kinetics Sulfur Cathode for Na-S Batteries. ACS Nano 2021, 15, 15218-15228.
8. Ling, F.#; Wang, L.#; Liu, F.; Ma, M.; Zhang, S.; Rui, X.; Shao, Y.; Yang, Y.; He, S.; Pan, H.; Wu, X.; Yao, Y*.; Yu, Y*., Multi-Scale Structure Engineering of ZnSnO3 for Ultra-Long-Life Aqueous Zinc-Metal Batteries. Advanced Materials 2023, 35, e2208764.
9. Ye, S.#; Wang, L.#; Liu, F.; Shi, P.; Wang, H.; Wu, X.; Yu, Y.*, g‐C3N4 Derivative Artificial Organic/Inorganic Composite Solid Electrolyte Interphase Layer for Stable Lithium Metal Anode. Advanced Energy Materials 2020, 10, 2002647.
10. Ren, N.; Wang, L.; Li, X.; Cao, K.; He, Z.; Shao, Y.; Xiao, J.; Zhu, Y.; Pan, B.; Jiao, S.; Chen, C., Design Principles of Mediation Layer for Current Collectors Toward High‐Performance Anode‐Free Potassium‐Metal Batteries: A Case Study of Cu6Sn5 on Copper. Advanced Functional Materials 2024, DOI: 10.1002/adfm.202313538.
11. Ren, N.; Wang, L.; Dong, J.; Cao, K.; Li, Y.; Chen, F.; Xiao, J.; Pan, B.; Chen, C., Synergistic engineering of electronic structure and particle size in SnSe@CNF anode toward high performance potassium ion batteries. Chemical Engineering Journal 2023, 458, 141489.
12. Ren, N.; Wang, L.; He, X.; Zhang, L.; Dong, J.; Chen, F.; Xiao, J.; Pan, B.; Chen, C., High ICE Hard Carbon Anodes for Lithium-Ion Batteries Enabled by a High Work Function. ACS Applied Materials & Interfaces 2021, 13, 46813-46820.