4518
当前位置: 首页   >  组员介绍   >  杨沛琦
杨沛琦 教授 博士生导师    

杨沛琦,男,江西上饶人。教授,博士生导师。入选国家高层次青年人才、江苏特聘教授、南京师范大学中青年杰出人才。主要从事定量遥感、辐射传输建模、叶绿素荧光遥感、生物地球化学物质循环等研究。在RSE、GMD等期刊上发表论文30余篇,建立“光学-热红外-荧光”统一的辐射传输理论,开发土壤-植被-大气辐射传输模型SPART、辐射传输与能量平衡模型mSCOPE和SCOPE2.0;通过统一辐射传输理论,揭示了荧光与近红外反射率的物理关系,提出了R2F关联理论,并建立植物生理遥感FCVI指数。


获得荣誉

2023年    李小文遥感科学青年奖

2023年    江苏省地理学会青年科技奖


指导学生获得荣誉:

2024年    高光谱遥感数据处理与应用大赛三等奖(植被组第一名)

2024年    江苏省高校测绘地理信息本科生优秀毕业论文一等奖

2023年    首届苏港澳高校遥感制图分析与学术能力竞赛一等奖、优秀指导教师



社会兼职

Information Geography期刊副主编

Remote Sensing期刊编委

Journal of Remote Sensing期刊青年编委

中国自然资源学会资源制图专业委员会委员

苏港澳高校遥感与环境专业联盟委员会委员


工作经历

2021.07----至今         南京师范大学,地理科学学院,教授

2018.07----2021.07   荷兰特文特大学,国际地理信息科学与地球观测学院ITC,Researcher

2015.07----2015.09    德国尤利希研究所 (Jülich),短期访问

2019.03----2019.04    美国马里兰大学巴尔的摩分校,短期访问


教育背景

2014.09----2018.07    荷兰特文特大学,国际地理信息科学与地球观测学院ITC,博士

2011.09----2014.07    北京师范大学,地理学与遥感科学学院,地图学与地理信息系统,理学硕士

2007.09----2011.07    武汉大学,测绘学院,测绘工程,工学学士


承担(参与)的主要科研项目:

国家自然科学基金委员会,面上项目,联合日光诱导叶绿素荧光与光化学反射率指数的植被光能利用率遥感探测机理研究,2025.01至2028.12,在研,主持

国家自然科学基金委员会,青年科学基金项目,融合反射率和日光诱导叶绿素荧光信号反演植被光合生理信息的研究,2022.01至2024.12,在研,主持

江苏特聘教授,植被生理遥感,在研,主持

遥感科学国家重点实验室,开放基金,基于近地时序高光谱的冠层结构与生理参数分段反演,在研,主持

南京留学人员科技创新项目,农作物产量预测系统研发,结题,主持


论文成果:

2024

Yang, P.*, 2024. Downscaling canopy photochemical reflectance index to leaf level by correcting for the soil effects. Remote Sensing of Environment311, p.114250.  https://doi.org/10.1016/j.rse.2024.114250


2023

Yang, P.*, Liu, X., Liu, Z., van der Tol, C. and Liu, L., 2023. The roles of radiative, structural and physiological information of sun-induced chlorophyll fluorescence in predicting gross primary production of a corn crop at various temporal scales. Agricultural and Forest Meteorology342, p.109720. https://doi.org/10.1016/j.agrformet.2023.109720

Shi, S., Yang, P.* and van der Tol, C., 2023. Spatial-temporal dynamics of land surface phenology over Africa for the period of 1982-2015. Heliyon9(6). https://doi.org/10.1016/j.heliyon.2023.e16413

Wang, N., Yang, P., Clevers, J.G., Wieneke, S. and Kooistra, L., 2023. Decoupling physiological and non-physiological responses of sugar beet to water stress from sun-induced chlorophyll fluorescence. Remote Sensing of Environment286, p.113445. https://doi.org/10.1016/j.rse.2022.113445

van der Tol, C., Julitta, T., Yang, P., Sabater, N., Reiter, I., Tudoroiu, M., Schuettemeyer, D. and Drusch, M., 2023. Retrieval of chlorophyll fluorescence from a large distance using oxygen absorption bands. Remote Sensing of Environment284, p.113304. https://doi.org/10.1016/j.rse.2022.113304

Han, D., Liu, J.*, Zhang, R., Liu, Z., Guo, T., Jiang, H., Wang, J., Zhao, H., Ren, S. and Yang, P., 2023. Evaluation of the SAIL Radiative Transfer Model for Simulating Canopy Reflectance of Row Crop Canopies. Remote Sensing15(23), p.5433. https://doi.org/10.3390/rs15235433

Liu, Z., He, X., Yang, P., Jiang, H., Xu, S., Zhao, H., Ren, S. and Chen, M., 2023. Diurnal Pattern of Sun-Induced Chlorophyll Fluorescence as Reliable Indicators of Crop Water Stress. IEEE Geoscience and Remote Sensing Letters.  https://doi.org/10.1109/LGRS.2023.3300149

Jiang, H., Liu, Z., Wang, J., Yang, P., Zhang, R., Zhang, X. and Zheng, P., 2023. Combining Chlorophyll Fluorescence and Vegetation Reflectance Indices to Estimate Non-Photochemical Quenching (NPQ) of Rice at the Leaf Scale. Remote Sensing15(17), p.4222. https://doi.org/10.3390/rs15174222


2022

Yang, P. *, (2022), Exploring the interrelated effects of soil background, canopy structure and sun-observer geometry on canopy photochemical reflectance index. Remote Sensing of Environment, 279, 113133. https://doi.org/10.1016/j.rse.2022.113133

Zhang, R., Yang, P. *, Liu, S., Wang, C., and Liu, J. (2022). Evaluation of the Methods for Estimating Leaf Chlorophyll Content with SPAD Chlorophyll Meters. Remote Sensing 14, no. 20: 5144.https://doi.org/10.3390/rs14205144

Rastogi A, Antala M, Prikaziuk E, Yang P, van der Tol C, Juszczak R. (2022). Exploring the Potential of SCOPE Model for Detection of Leaf Area Index and Sun-Induced Fluorescence of Peatland Canopy. Remote Sensing.; 14(16):4010.https://doi.org/10.3390/rs14164010


2021

Yang, P.*, Verhoef, W., Prikaziuk, E., & van der Tol, C. (2021). Improved retrieval of land surface biophysical variables from time series of Sentinel-3 OLCI TOA spectral observations by considering the temporal autocorrelation of surface and atmospheric properties. Remote Sensing of Environment, 256, 112328.https://doi.org/10.1016/j.rse.2021.112328

Yang, P., Prikaziuk, E., Verhoef, W., & van Der Tol, C.* (2021). SCOPE 2.0: A model to simulate vegetated land surface fluxes and satellite signals. Geoscientific Model Development, 14(7), 4697-4712. https://doi.org/10.5194/gmd-14-4697-2021

Yang, P.*, Van der Tol, C., Campbell, P. K., & Middleton, E. M. (2021). Unravelling the physical and physiological basis for the solar-induced chlorophyll fluorescence and photosynthesis relationship. Biogeosciences, 1-32.https://doi.org/10.5194/bg-18-441-2021

Campbell, P., Middleton, E., Huemmrich, K., Ward, L., Julitta, T., Yang, P., ... & Kustas, W. (2021). Scaling photosynthetic function and CO2 dynamics from leaf to canopy level for maize–dataset combining diurnal and seasonal measurements of vegetation fluorescence, reflectance and vegetation indices with canopy gross ecosystem productivity. Data in Brief, 39, 107600.https://doi.org/10.1016/j.dib.2021.107600

Siegmann, B., Cendrero-Mateo, M. P., Cogliati, S., Damm, A., Gamon, J., Herrera, D., ... Yang, P. , & Rascher, U. (2021). Downscaling of far-red solar-induced chlorophyll fluorescence of different crops from canopy to leaf level using a diurnal data set acquired by the airborne imaging spectrometer HyPlant. Remote sensing of environment, 264, 112609.https://doi.org/10.1016/j.rse.2021.112609

Malenovský, Z., Regaieg, O., Yin, T., Lauret, N., Guilleux, J., Chavanon, E., ... Yang, P., & Gastellu-Etchegorry, J. P. (2021). Discrete anisotropic radiative transfer modelling of solar-induced chlorophyll fluorescence: Structural impacts in geometrically explicit vegetation canopies. Remote Sensing of Environment, 263, 112564.https://doi.org/10.1016/j.rse.2021.112564

Wang, Y., Zeng, Y., Yu, L., Yang, P., Van der Tol, C., Yu, Q., ... & Su, Z. (2021). Integrated modeling of canopy photosynthesis, fluorescence, and the transfer of energy, mass, and momentum in the soil–plant–atmosphere continuum (STEMMUS–SCOPE v1. 0.0). Geoscientific Model Development, 14(3), 1379-1407.https://doi.org/10.5194/gmd-14-1379-2021

Prikaziuk, E., Yang, P., & van der Tol, C. (2021). Google Earth Engine Sentinel-3 OLCI Level-1 Dataset Deviates from the Original Data: Causes and Consequences. Remote Sensing, 13(6), 1098.https://doi.org/10.3390/rs13061098


2020

Yang, P.*, van der Tol, C., Tiangang Yin., Verhoef, W. (2020). The SPART model: a soil-plant-atmosphere radiative transfer model for satellite measurements in the solar spectrum. Remote Sensing of Environment, 247, 11187.https://doi.org/10.1016/j.rse.2020.111870

Yang, P.*, van der Tol, C., Campbell, P. and Middleton, E., (2020). Fluorescence Correction Vegetation Index (FCVI): A physically based reflectance index to separate physiological and non-physiological information in far-red sun-induced chlorophyll fluorescence. Remote Sensing of Environment, 240, 111676.https://doi.org/10.1016/j.rse.2020.111676

Yang, P.*, Verhoef, W., van der Tol, C., (2020). Unified four-stream radiative transfer theory in the optical-thermal domain with consideration of fluorescence for multi-layer vegetation canopies. Remote Sensing.https://doi.org/10.3390/rs12233914


2019

Yang, P.*, van der Tol, C., Verhoef, W., Damm, ... & Rascher, U., 2019. Using reflectance to explain vegetation biochemical and structural effects on sun-induced chlorophyll fluorescence, Remote Sensing of Environment, 231.https://doi.org/10.1016/j.rse.2018.11.039

Yang, P.*, van der Tol, C., 2018. Linking canopy scattering of far-red sun-induced chlorophyll fluorescence with reflectance. Remote Sensing of Environment, 209, 456 – 467.https://doi.org/10.1016/j.rse.2018.02.029

Yang, P.*, Verhoef, W., van der Tol, C., 2017. The mSCOPE model: A simple adaptation to the SCOPE model to describe reflectance, fluorescence and photosynthesis of vertically heterogeneous canopies. Remote Sensing of Environment, 201, 1 - 11.https://doi.org/10.1016/j.rse.2017.08.029





Yang, P.*, Van der Tol, C., Rascher, U., Damm, A., Schickling, A., & Verhoef, W. (2016, December). Detecting Crop Functional Response to a Heat Wave using Airborne Reflectance and Sun-induced Chlorophyll Fluorescence Measurements. In AGU Fall Meeting Abstracts (Vol. 2016, pp. B51B-0390).https://optimise.dcs.aber.ac.uk/wp-content/uploads/Session7_Peiqi-Yang.pdf

Yang, P.*, van der Tol, C. (2018), A spectral invariant approach to modelling radiative transfer of sun-induced chlorophyll fluorescence. IEEE Geoscience and Remote Sensing Symposium (IGARSS).https://doi.org/10.1109/IGARSS.2018.8517742

Yang, P., Liu, Z.*, (2013) Remote sensing of solar-induced chlorophyll fluorescence from an unmanned airship platform. IEEE Geoscience and Remote Sensing Symposium (IGARSS).https://doi.org/10.1109/IGARSS.2013.6723402

杨沛琦,刘志刚*,倪卓娅,王冉,王庆山,2013. 基于低空成像高光谱系统探测植被日光诱导叶绿素荧光. 光谱学与光谱分析, 33(11), 3101-3105.http://doi.org/10.3964/j.issn.1000-0593(2013)11-3101-05




17. 


van der Tol, C., & Yang, P. (2020, December). From SIF to photosynthesis: Achievements, challenges and opportunities. In AGU Fall Meeting Abstracts (Vol. 2020, pp. B039-02).

van der Tol, C., Yang, P., Prikaziuk, E., & Verhoef, W. (2020, December). Energy budget and radiative transfer modelling in the soil, vegetation, atmosphere continuum. In AGU Fall Meeting 2020.

Bayat, B., van der Tol, C., Yang, P., Montzka, C., Vereecken, H., & Verhoef, W. (2020, May). Integrating soil moisture in SCOPE model for improving remote sensing of evapotranspiration and photosynthesis under water stress conditions. In EGU General Assembly Conference Abstracts (p. 5658).https://doi.org/10.5194/egusphere-egu2020-5658

Celesti, M., Biriukova, K., Campbell, P. K., Cesana, I., Cogliati, S., Damm, A., ... , Yang, P., & Colombo, R. (2020, May). Exploring continuous time series of vegetation hyperspectral reflectance and solar-induced fluorescence through radiative transfer model inversion. In EGU General Assembly Conference Abstracts (p. 14904).https://doi.org/10.5194/egusphere-egu2020-14904

Joiner, J., Yoshida, Y., Köehler, P., Campbell, P., Frankenberg, C., van der Tol, C., Yang, P.,... & Sun, Y. (2020). Systematic orbital geometry-dependent variations in satellite solar-induced fluorescence (SIF) retrievals. Remote sensing, 12(15), 2346.https://doi.org/10.3390/rs12152346

Tagliabue, G., Celesti, M., Biriukova, K., Campbell, P. K. E., Cesana, I., Cogliati, S., ... Yang, P., & Colombo, R. (2019, December). Exploring continuous time series of vegetation hyperspectral reflectance and solar-induced fluorescence through radiative transfer model inversion. In AGU Fall Meeting Abstracts (Vol. 2019, pp. B11Q-2277).https://doi.org/10.5194/egusphere-egu2020-14904

van der Tol, C., Vilfan, N., Dauwe, D., Cendrero-Mateo, M. P., & Yang, P. (2019). The scattering and re-absorption of red and near-infrared chlorophyll fluorescence in the models Fluspect and SCOPE. Remote sensing of environment, 232, 111292.https://doi.org/10.1016/j.rse.2019.111292

Bayat, B., van der Tol, C., Yang, P., & Verhoef, W. (2019). Extending the SCOPE model to combine optical reflectance and soil moisture observations for remote sensing of ecosystem functioning under water stress conditions. Remote sensing of environment, 221, 286-301.https://doi.org/10.1016/j.rse.2018.11.021

Martini, D., Pacheco-Labrador, J., Perez-Priego, O., Van der Tol, C., El-Madany, T. S., Julitta, T., Yang, P.,... & Migliavacca, M. (2019). Nitrogen and phosphorus effect on sun-induced fluorescence and gross primary productivity in mediterranean grassland. Remote sensing, 11(21), 2562.https://doi.org/10.3390/rs11212562

Celesti, M., van der Tol, C., Cogliati, S., Panigada, C., Yang, P., Pinto, F., ... & Rossini, M. (2018). Exploring the physiological information of Sun-induced chlorophyll fluorescence through radiative transfer model inversion. Remote sensing of environment, 215, 97-108.https://doi.org/10.1016/j.rse.2018.05.013

van der Tol, C., Vilfan, N., Yang, P., Bayat, B., & Verhoef, W. (2018, July). Modeling reflectance, fluorescence and photosynthesis: Development of the scope model. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 5968-5971). IEEE.https://doi.org/10.1109/IGARSS.2018.8517517

Vilfan, N., van der Tal, C., Yang, P., & Verhoef, W. (2018, July). Retrieving photosynthetic capacity parameter from leaf photochemical reflectance and chlorophyll fluorescence. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 5991-5994). IEEE.https://doi.org/10.1109/IGARSS.2018.8517912

Vilfan, N., Van der Tol, C., Yang, P., Wyber, R., Malenovský, Z., Robinson, S. A., & Verhoef, W. (2018). Extending Fluspect to simulate xanthophyll driven leaf reflectance dynamics. Remote sensing of environment, 211, 345-356.https://doi.org/10.1016/j.rse.2018.04.012

Ni, Z., Liu, Z., Li, Z. L., Nerry, F., Huo, H., Sun, R., Yang, P., & Zhang, W. (2016). Investigation of atmospheric effects on retrieval of sun-induced fluorescence using hyperspectral imagery. Sensors, 16(4), 480.https://doi.org/10.3390/s16040480

王冉,刘志刚,冯海宽,杨沛琦,王庆山,倪卓娅, (2013). 基于近地面高光谱影像的冬小麦日光诱导叶绿素荧光提取与分析.光谱学与光谱分析, 33(9), 2451-2454.http://doi.org/10.3964/j.issn.1000-0593(2013)09-2451-04

王冉, 刘志刚, 杨沛琦, (2012). 植物日光诱导叶绿素荧光遥感原理及研究进展. 地球科学进展. 27(11).https://doi.org/10.11867/j.issn.1001-8166.2012.11.1221

专利-刘志刚, 陈绩, 杨沛琦, 王庆山, 张葳葳, & 倪卓娅等. (2014). 一种叶片主被动叶绿素荧光长时间序列协同观测系统.