学术论文 (#一作,*通讯)
[82] N. Liu#, X. Ning#, X. Zhang, Z. Zhou, M. Fu, Y. Wang, T. Wu*. Gradient galectin-1 coating technology: bionic multichannel nerve guidance conduits promote neural cell migration, Advanced Technology in Neuroscience, 2024, 1(2), 276-289. DOI: https://doi.org10.4103/ATN.ATN-D-24-00010
[81] X. Ning#, R. Wang#, N. Liu, Y. You, Y. Wang, J. Wang, Y. Wang, Z. Chen, H. Zhao*, T. Wu*, Three-dimensional structured PLCL/ADM bioactive aerogel for rapid repair of full-thickness skin defects, Biomaterials Science, 2024. DOI: https://doi.org/10.1039/D4BM01214C
[80] C. Yu, J. Chen, T. Wang, Y. Wang, X. Zhang, Z. Zhang, Y. Wang*, T. Yu*, T. Wu*, GelMA hydrogels reinforced by PCL@GelMA nanofibers and bioactive glass induce bone regeneration in critical size cranial defects, Journal of Nanobiotechnology, 2024, 22, 696. DOI: https://doi.org/10.1186/s12951-024-02980-w
[79] J. Yin, X. Xu, Y. Guo, C. Sun, Y. Yang, H. Liu, P. Yu, T. Wu*, X, Song*, Repair and regeneration: ferroptosis in the process of remodeling and fibrosis in impaired organs, Cell Death Discovery, 2024, 10, 424. DOI: https://doi.org/10.1038/s41420-024-02181-2
[78] T. Wu, X. Li, J. Xue, Y. Xia*, Rational fabrication of functionally-graded surfaces for biological and biomedical applications, Accounts of Materials Research, 2024. DOI: https://doi.org/10.1021/accountsmr.4c00186
[77] R. Chen#, Y. Wang#, C. Yu, X. Zhang, Y. Wang, T. Yu*, T. Wu*, Bioactive glass-reinforced hybrid microfibrous spheres promote bone defect repair via stem cell delivery, Advanced Fiber Materials, 2024. DOI: https://doi.org/10.1007/s42765-024-00481-x
[76] G. Yuan#, C. Yu#, X. Du, D. Li, H. Dou, P. Lu, T. Wu, C. Hao*, Y. Wang*, Injectable GelMA hydrogel microspheres with sustained release of platelet-rich plasma for the treatment of thin endometrium, Small, 2024. DOI: https://doi.org/10.1002/smll.202403890
[75] Y. Wang, X. Zhang, N. Liu, R. Chen, C. Yu, L. Yao, S. Chen, Y. Yan, T. Wu, Y. Wang*, Injectable hybrid nanofibrous spheres made of PLA and nano-hydroxyapatite for cell delivery and osteogenic induction, Frontiers in Bioengineering and Biotechnology, 2024, 12. DOI: https://doi.org/10.3389/fbioe.2024.1460870
[74] Y. You#, X. Ning#, X. Zhang#, Y. Wang, Y. Zhang, K. Mao, Y. Wang*, T. Wu*, W. Zhang*, Development of magnesium hydroxide-doped nanofibrous spheres for repairing infected skin wounds, Biomaterials Advances, 2024, 163, 213967. DOI: https://doi.org/10.1016/j.bioadv.2024.213967
[73] Y. Luo#, M. Fu#, Z. Zhou, X. Zhang, Q. Guo, Y. Wang, W. Zhang, Y. Wang*, Z. Chen*, T. Wu*, A tilapia skin-derived gelatin hydrogel combined with the adipose-derived stromal vascular fraction for full-thickness wound healing, Nanoscale Advances, 2024, 6, 4230-4236. DOI: https://doi.org/10.1039/D4NA00332B
[72] X. Tang#, Y. Wang#, N. Liu#, X. Deng, Z. Zhou, C. Yu, Y. Wang*, K. Fang*, T. Wu*, Methacrylated carboxymethyl chitosan scaffold containing icariin-loaded short fibers for antibacterial, hemostasis, and bone regeneration, ACS Biomaterials Science & Engineering, 2024, 10, 8, 5181–5193. DOI: https://doi.org/10.1021/acsbiomaterials.4c00707
[71] C. Yu, R. Chen, J. Chen, T. Wang, Y. Wang, X. Zhang, Y. Wang, T. Wu*, T. Yu*, Enhancing tendon-bone integration and healing with advanced multi-layer nanofiber-reinforced 3D scaffolds for acellular tendon complexes, Materials Today Bio, 2024, 26, 101099. DOI: https://doi.org/10.1016/j.mtbio.2024.101099
[70] X. Deng#, C. Yu#, X. Zhang#, X. Tang, Q. Guo, M. Fu, Y. Wang*, K. Fang*, T. Wu*, A chitosan-coated PCL/nano-hydroxyapatite aerogel integrated with a nanofiber membrane for providing antibacterial activity and guiding bone regeneration, Nanoscale, 2024, 16, 9861-9874. DOI: https://doi.org/10.1039/D4NR00563E
[69] S. Sun, H. Luo, Y. Wang, Y. Xi*, K. Fang*, T. Wu*, Artificial spinal dura mater made of gelatin microfibers and bioadhensive for preventing cerebrospinal fluid leakage, Chemical Communications, 2024, 60, 2353-2356. DOI: https://doi.org/10.1039/D3CC06278C
[68] Y. Luo#, F. Tao#, J. Wang, Y. Chai, C. Ren, Y. Wang*, T. Wu*, Z. Chen*, Development and evaluation of tilapia skin-derived gelatin, collagen, and acellular dermal matrix for potential use as hemostatic sponges, International Journal of Biological Macromolecules, 2023, 253, 127014. DOI: https://doi.org/10.1016/j.ijbiomac.2023.127014
[67] T. Wu, G. Williams, Y. Wang, T. Zhu, B. Sun, Advanced fiber materials for controlled release, tissue repair, and regenerative medicine, Frontiers in Materials, 2023, 10, 1244284. DOI: https://doi.org/10.3389/fmats.2023.1244284
[66] Y. Liu#, Q. Guo#, X. Zhang, # Y. Wang*, X. Mo, T. Wu*, Progress in electrospun fibers for manipulating cell behaviors, Advanced Fiber Materials, 2023, 5, 1241-1272. DOI: https://doi.org/10.1007/s42765-023-00281-9
[65] X. Zhang, M. Guo, Q. Guo, N. Liu, Y. Wang, T. Wu*, Modulating axonal growth and neural stem cell migration with the use of uniaxially aligned nanofiber yarns welded with NGF-loaded microparticles, Materials Today Advances, 2023, 17, 100343. DOI: https://doi.org/10.1016/j.mtadv.2023.100343
[64] Y. Liu#, X. Zhang#, Y. Wang, M. Guo, J. Sheng, Y. Wang, T. Wu*, Promoting neurite outgrowth and neural stem cell migration using aligned nanofibers decorated with protrusions and galectin-1 coating, Chemical Communications, 2023, 59, (72), 10753-10756. DOI: https://doi.org/10.1039/D3CC02869K
[63] N. Liu#, Z. Zhou#, X. Ning, X. Zhang, Q. Guo, M. Guo, Y. Wang, T. Wu*, Enhancing the paracrine effects of adipose stem cells using nanofiber-based meshes prepared by light-welding for accelerating wound healing, Materials & Design, 2023, 225, 111582. DOI: https://doi.org/10.1016/j.matdes.2022.111582
[62] Y. Liu#, Y. Xu#, X. Zhang, N. Liu, B. Cong, Y. Sun, M. Guo, Z. Liu, L. Jiang, W. Wang, T. Wu*, Y. Wang*, On-demand release of fucoidan from a multilayered nanofiber patch for the killing of oral squamous cancer cells and promotion of epithelial regeneration, Journal of Functional Biomaterials, 2022, 13, (4), 167. DOI: https://doi.org/10.3390/jfb13040167
[61] C. Yu, T. Wang, H. Diao, N. Liu, Y. Zhang, H. Jiang, P. Zhao, Z. Shan, Z. Sun, T. Wu*, X. Mo, T. Yu*, Photothermal-triggered structural change of nanofiber scaffold integrating with graded mineralization to promote tendon–bone healing, Advanced Fiber Materials, 2022, 4, (4), 908-922. DOI: https://doi.org/10.1007/s42765-022-00154-7
[60] N. Liu#, X. Zhang#, Q. Guo#, T. Wu, Y. Wang*, 3D bioprinted scaffolds for tissue repair and regeneration, Frontiers in Materials, 2022, 9, 925321. DOI: https://doi.org/10.3389/fmats.2022.925321
[59] Z. Zhao#, T. Wu#, Y. Cui, R. Zhao, Q. Wan*, R. Xu*, Design and fabrication of nanofibrous dura mater with antifibrosis and neuroprotection effects on SH-SY5Y cells, Polymers, 2022, 14, (9), 1882. DOI: https://doi.org/10.3390/polym14091882
[58] J. Xue, T. Wu, J. Qiu, Y. Xia, Accelerating cell migration along radially aligned nanofibers through the addition of electrosprayed nanoparticles in a radial density gradient, Particle & Particle Systems Characterization, 2022, 39, (4), 2100280. DOI: https://doi.org/10.1002/ppsc.202100280
[57] W. Wang, Z. Zhou, N. Liu, X. Zhang, H. Zhou, Y. Wang*, K. Fang*, T. Wu*, Improving biocompatibility of polyester fabrics through polyurethane/gelatin complex coating for potential vascular application, Polymers, 2022, 14, (5), 989. DOI: https://doi.org/10.3390/polym14050989
[56] Y. Wang, Q. Guo, W. Wang, Y. Wang*, K. Fang, Q. Wan, H. Li*, T. Wu*, Potential use of bioactive nanofibrous dural substitutes with controlled release of IGF-1 for neuroprotection after traumatic brain injury, Nanoscale, 2022, 14, (48), 18217-18230. DOI: https://doi.org/10.1039/D2NR06081G
[55] X. Yu, C. Wang, Y. Wang, L. Li, X. Gao, T. Zhu, P. An, Z. Meng, W. Wang*, T. Wu*, Y. Hao*, Microneedle-array patch made of kangfuxin/chitosan/fucoidan complex enables full-thickness wound healing, Frontiers in Chemistry, 2022, 13. DOI: https://doi.org/10.3389/fchem.2022.838920
[54] Z. Zhou, N. Liu, X. Zhang, X. Ning, Y. Miao, Y. Wang, J. Sun, Q. Wan, X. Leng, T. Wu*, Manipulating electrostatic field to control the distribution of bioactive proteins or polymeric microparticles on planar surfaces for guiding cell migration, Colloids and Surfaces B: Biointerfaces, 2022, 209, 112185. DOI: https://doi.org/10.1016/j.colsurfb.2021.112185
[53] Y. Wang#, Y. Liu#, X. Zhang, N. Liu, X. Yu, M. Gao, W. Wang, T. Wu*, Engineering electrospun nanofibers for the treatment of oral diseases, Frontiers in Chemistry, 2021, 9, 797523. DOI: https://doi.org/10.3389/fchem.2021.797523
[52] Y. Liu, L. Xie, M. Gao*, R. Zhang, J. Gao, J. Sun, Q. Chai, T. Wu, K. Liang, P. Chen, Q. Wan*, B. Kong*, Super-assembled periodic mesoporous organosilica frameworks for real-time hypoxia-triggered drug release and monitoring, ACS Applied Materials & Interfaces, 2021, 13, (42), 50246-50257. DOI: https://doi.org/10.1021/acsami.1c15067
[51] C. He#, X. Liu#, Z. Zhou#, N. Liu, X. Ning, Y. Miao, Y. Long, T. Wu*, X. Leng*, Harnessing biocompatible nanofibers and silver nanoparticles for wound healing: Sandwich wound dressing versus commercial silver sulfadiazine dressing, Materials Science and Engineering: C, 2021, 128, 112342. DOI: https://doi.org/10.1016/j.msec.2021.112342
[50] Y. Wang, T. Wu*, J. Zhang, Z. Feng, M. Yin*, X. Mo*, A bilayer vascular scaffold with spatially controlled release of growth factors to enhance in situ rapid endothelialization and smooth muscle regeneration, Materials & Design, 2021, 204, 109649. DOI: https://doi.org/10.1016/j.matdes.2021.109649
[49] Z. Feng#, X. Zhang#, N. Liu#, Y. Wang, Z. Zhou, O.O. Glebov, T. Wu*, Promotion of neurite outgrowth and extension using injectable welded nanofibers, Chemical Research in Chinese Universities, 2021, 37, (3), 522-527. DOI: https://doi.org/10.1007/s40242-021-1104-8
[48] Q. Chai, L. Xie, M. Gao, Y. Liu, X. Xu, X. Huang, P. Chen, T. Wu, Q. Wan*, B. Kong*, Super-assembled silica nanoprobes for intracellular Zn (II) sensing and reperfusion injury treatment through in situ MOF crystallization, Analyst, 2021, 146, (22), 6788-6797. DOI: https://doi.org/10.1039/D1AN01475G
[47] S. Shen*, T. Wu*, J. Xue, H. Li, Q. Chen, H. Cheng, L. Wu, J. Qian*, A smart material built upon the photo-thermochromic effect and its use for managing indoor temperature, Chemical Communications, 2021, 57, (69), 8628-8631. DOI: https://doi.org/10.1039/D1CC03379D
[46] D. Li, L. Tao, T. Wu, L. Wang, B. Sun, Q. Ke, X. Mo*, B. Deng*, Mechanically-reinforced 3D scaffold constructed by silk nonwoven fabric and silk fibroin sponge, Colloids and Surfaces B: Biointerfaces, 2020, 196, 111361. DOI: https://doi.org/10.1016/j.colsurfb.2020.111361
[45] J. Xue, T. Wu, J. Qiu, S. Rutledge, M.L. Tanes, Y. Xia*, Promoting cell migration and neurite extension along uniaxially aligned nanofibers with biomacromolecular particles in a density gradient, Advanced functional materials, 2020, 30, (40), 2002031. DOI: https://doi.org/10.1002/adfm.202002031
[44] J. Xue, T. Wu, J. Qiu, Y. Xia*, Spatiotemporally controlling the release of biological effectors enhances their effects on cell migration and neurite outgrowth, Small Methods, 2020, 4, (9), 2000125. DOI: https://doi.org/10.1002/smtd.202000125
[43] T. Wu, X. Mo, Y. Xia*, Moving electrospun nanofibers and bioprinted scaffolds toward translational applications, Advanced Healthcare Materials, 2020, 9, (6), 1901761. DOI: https://doi.org/10.1002/adhm.201901761
[42] H. Li#, T. Wu#, J. Xue, Q. Ke, Y. Xia*, Transforming nanofiber mats into hierarchical scaffolds with graded changes in porosity and/or nanofiber alignment, Macromolecular rapid communications, 2020, 41, (3), 1900579. DOI: https://doi.org/10.1002/marc.201900579
[41] J. Qiu#, M. Xie#, T. Wu#, D. Qin, Y. Xia*, Gold nanocages for effective photothermal conversion and related applications, Chemical Science, 2020, 11, (48), 12955-12973. DOI: https://doi.org/10.1039/D0SC05146B
[40] T. Wu, J. Xue, Y. Xia*, Engraving the surface of electrospun microfibers with nanoscale grooves promotes the outgrowth of neurites and the migration of schwann cells, Angewandte Chemie International Edition, 2020, 59, (36), 15626-15632. DOI: https://doi.org/10.1002/anie.202002593
[39] T. Wu#, H. Li#, J. Xue, X. Mo, Y. Xia*, Photothermal welding, melting, and patterned expansion of nonwoven mats of polymer nanofibers for biomedical and printing applications, Angewandte Chemie International Edition, 2019, 58, (46), 16416-16421. DOI: https://doi.org/10.1002/anie.201907876
[38] T. Wu, H. Li, M. Xie, S. Shen, W. Wang, M. Zhao, X. Mo, Y. Xia*, Incorporation of gold nanocages into electrospun nanofibers for efficient water evaporation through photothermal heating, Materials Today Energy, 2019, 12, 129-135. DOI: https://doi.org/10.1016/j.mtener.2018.12.008
[37] J. Xue#, T. Wu#, Y. Dai#, Y. Xia*, Electrospinning and electrospun nanofibers: methods, materials, and applications, Chemical Reviews, 2019, 119, (8), 5298-5415. DOI: https://doi.org/10.1021/acs.chemrev.8b00593
[36] J. Xue, T. Wu, J. Li, C. Zhu, Y. Xia*, Promoting the outgrowth of neurites on electrospun microfibers by functionalization with electrosprayed microparticles of fatty acids, Angewandte Chemie International Edition, 2019, 58, (12), 3948-3951. DOI: https://doi.org/10.1002/anie.201814474
[35] B. Sun#, Z. Zhou#, D. Li, T. Wu, H. Zheng, J. Liu, G. Wang, Y. Yu*, X. Mo*, Polypyrrole-coated poly (l-lactic acid-co-ε-caprolactone)/silk fibroin nanofibrous nerve guidance conduit induced nerve regeneration in rat, Materials Science and Engineering: C, 2019, 94, 190-199. DOI: https://doi.org/10.1016/j.msec.2018.09.021
[34] T. Wu#, J. Zhang#, Y. Wang, B. Sun, M. Yin*, G.L. Bowlin, X. Mo*, Design and fabrication of a biomimetic vascular scaffold promoting in situ endothelialization and tunica media regeneration, ACS Applied Bio Materials, 2018, 1, (3), 833-844. DOI: https://doi.org/10.1021/acsabm.8b00269
[33] T. Wu#, J. Xue#, H. Li, C. Zhu, X. Mo, Y. Xia*, General method for generating circular gradients of active proteins on nanofiber scaffolds sought for wound closure and related applications, ACS Applied Materials & Interfaces, 2018, 10, (10), 8536-8545. DOI: https://doi.org/10.1021/acsami.8b00129
[32] J. Xue, T. Wu#, Y. Xia, Perspective: Aligned arrays of electrospun nanofibers for directing cell migration, APL Materials, 2018, 6, (12), 120902. DOI: https://doi.org/10.1063/1.5058083
[31] H. Li, T. Wu, M. Xie, Y. Shi, S. Shen, M. Zhao, X. Yang, L.M. Figueroa-Cosme, Q. Ke, Y. Xia*, Enhancing the tactile and near-infrared sensing capabilities of electrospun PVDF nanofibers with the use of gold nanocages, Journal of Materials Chemistry C, 2018, 6, (38), 10263-10269. DOI: https://doi.org/10.1039/C8TC02671H
[30] T. Wu#, J. Zhang#, Y. Wang, D. Li, B. Sun, H. El-Hamshary, M. Yin*, X. Mo*, Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering, Materials Science and Engineering: C, 2018, 82, 121-129. DOI: https://doi.org/10.1016/j.msec.2017.08.072
[29] B. Sun, Z. Zhou, T. Wu, W. Chen, D. Li, H. Zheng, H. El-Hamshary, S.S. Al-Deyab, X. Mo*, Y. Yu*, Development of nanofiber sponges-containing nerve guidance conduit for peripheral nerve regeneration in vivo, ACS applied materials & interfaces, 2017, 9, (32), 26684-26696. DOI: https://doi.org/10.1021/acsami.7b06707
[28] T. Wu, B. Sun, D. Li, X. Mo*, Anti-CD133 antibody loaded bilayer tubular scaffold based on poly (L-lactide-co-caprolactone)/collagen nanofibers and nanoyarns for vascular tissue engineering, Journal of Controlled Release, 2017, 259, e129. DOI: https://doi.org/10.1016/j.jconrel.2017.03.264
[27] T. Wu, J. Zhang, Y. Wang, B. Sun, X. Guo, Y. Morsi, H. El-Hamshary, M. El-Newehy, X. Mo*, Development of dynamic liquid and conjugated electrospun poly (L-lactide-co-caprolactone)/collagen nanoyarns for regulating vascular smooth muscle cells growth, Journal of biomedical nanotechnology, 2017, 13, (3), 303-312. DOI: https://doi.org/10.1166/jbn.2017.2352
[26] B. Sun, T. Wu, J. Wang, A. Bhutto M, L. Yuan, D. Li, X. Mo*, Fabrication and characterization of dual-layer multichannel nerve guidance conduit, Journal of Donghua University (Eng. Ed.) Vol, 2017, 34, (1).
[25] T. Wu, D. Li, Y. Wang, B. Sun, D. Li, Y. Morsi, H. El-Hamshary, S.S. Al-Deyab, X. Mo*, Laminin-coated nerve guidance conduits based on poly (l-lactide-co-glycolide) fibers and yarns for promoting Schwann cells’ proliferation and migration, Journal of Materials Chemistry B, 2017, 5, (17), 3186-3194. DOI: https://doi.org/10.1039/C6TB03330J
[24] J. Wang, B. Sun, L. Tian, X. He, Q. Gao, T. Wu, S. Ramakrishna, J. Zheng*, X. Mo*, Evaluation of the potential of rhTGF-β3 encapsulated P (LLA-CL)/collagen nanofibers for tracheal cartilage regeneration using mesenchymal stems cells derived from Wharton's jelly of human umbilical cord, Materials Science and Engineering: C, 2017, 70, 637-645. DOI: https://doi.org/10.1016/j.msec.2016.09.044
[23] T. Wu#, H. Zheng#, J. Chen, Y. Wang, B. Sun, Y. Morsi, H. El-Hamshary, S.S. Al-Deyab, C. Chen*, X. Mo*, Application of a bilayer tubular scaffold based on electrospun poly (l-lactide-co-caprolactone)/collagen fibers and yarns for tracheal tissue engineering, Journal of Materials Chemistry B, 2017, 5, (1), 139-150. DOI: https://doi.org/10.1039/C6TB02484J
[22] B. Sun, T. Wu, L. He, J. Zhang, Y. Yuan, X. Huang, H. Ei-Hamshary, S.S. Al-Deyab, T. Xu, X. Mo*, Development of dual neurotrophins-encapsulated electrospun nanofibrous scaffolds for peripheral nerve regeneration, Journal of Biomedical Nanotechnology, 2016, 12, (11), 1987-2000. DOI: https://doi.org/10.1166/jbn.2016.2299
[21] D. Li, W. Chen, B. Sun, H. Li, T. Wu, Q. Ke*, C. Huang, E.-H. Hany, S.S. Al-Deyab, X. Mo*, A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning, Colloids and Surfaces B: Biointerfaces, 2016, 146, 632-641. DOI: https://doi.org/10.1016/j.colsurfb.2016.07.009
[20] M.A. Bhutto, T. Wu, B. Sun, E.-H. Hany, S.S. Al-Deyab, X. Mo*, Fabrication and characterization of vitamin B5 loaded poly (l-lactide-co-caprolactone)/silk fiber aligned electrospun nanofibers for schwann cell proliferation, Colloids and Surfaces B: Biointerfaces, 2016, 144, 108-117. DOI: https://doi.org/10.1016/j.colsurfb.2016.04.013
[19] J. Zhang#, J. Du#, D. Xia, J. Liu, T. Wu, J. Shi, W. Song, D. Jin, X. Mo*, M. Yin*, Preliminary study of a novel nanofiber-based valve integrated tubular graft as an alternative for a pulmonary valved artery, RSC advances, 2016, 6, (88), 84837-84846. DOI: https://doi.org/10.1039/C6RA16292D
[18] K. Yu, X. Zhou, T. Zhu, T. Wu, J. Wang, J. Fang, M. El-Aassar, H. El-Hamshary, M. El-Newehy, X. Mo*, Fabrication of poly (ester-urethane) urea elastomer/gelatin electrospun nanofibrous membranes for potential applications in skin tissue engineering, RSC advances, 2016, 6, (77), 73636-73644. DOI: https://doi.org/10.1039/C6RA15450F
[17] X. Wang, T. Wu, W. Wang, C. Huang*, X. Jin, Regenerated collagen fibers with grooved surface texture: physicochemical characterization and cytocompatibility, Materials Science and Engineering: C, 2016, 58, 750-756. DOI: https://doi.org/10.1016/j.msec.2015.09.038
[16] B. Sun#, T. Wu#, J. Wang, D. Li, J. Wang, Q. Gao, M.A. Bhutto, H. El-Hamshary, S.S. Al-Deyab, X. Mo*, Polypyrrole-coated poly (l-lactic acid-co-ε-caprolactone)/silk fibroin nanofibrous membranes promoting neural cell proliferation and differentiation with electrical stimulation, Journal of Materials Chemistry B, 2016, 4, (41), 6670-6679. DOI: https://doi.org/10.1039/C6TB01710J
[15] J. Wang#, Q. An#, D. Li, T. Wu, W. Chen, B. Sun, H. Ei-Hamshary, S.S. Al-Deyab, W. Zhu*, X. Mo*, Heparin and vascular endothelial growth factor loaded poly (L-lactide-co-caprolactone) nanofiber covered stent-graft for aneurysm treatment, Journal of Biomedical Nanotechnology, 2015, 11, (11), 1947-1960. DOI: https://doi.org/10.1166/jbn.2015.2138
[14] J. Fang, J. Wang, T. Wu, A. Yin, X. Mo*, Electrospun macroporous fibrous scaffolds, Journal of controlled release: official journal of the Controlled Release Society, 2015, 213, e60-e61. DOI: https://doi.org/10.1016/j.jconrel.2015.05.100
[13] T. Wu, C. Huang, D. Li, A. Yin, W. Liu, J. Wang, J. Chen, E.-H. Hany, S.S. Al-Deyab, X. Mo*, A multi-layered vascular scaffold with symmetrical structure by bi-directional gradient electrospinning, Colloids and Surfaces B: Biointerfaces, 2015, 133, 179-188. DOI: https://doi.org/10.1016/j.colsurfb.2015.05.048
[12] D. Li, X. Pan, B. Sun, T. Wu, W. Chen, C. Huang, Q. Ke, H.A. Ei-Hamshary, S.S. Al-Deyab, X. Mo*, Nerve conduits constructed by electrospun P (LLA-CL) nanofibers and PLLA nanofiber yarns, Journal of Materials Chemistry B, 2015, 3, (45), 8823-8831. DOI: https://doi.org/10.1039/C5TB01402F
[11] T. Wu#, B. Jiang#, Y. Wang, A. Yin, C. Huang, S. Wang*, X. Mo*, Electrospun poly (l-lactide-co-caprolactone)–collagen–chitosan vascular graft in a canine femoral artery model, Journal of Materials Chemistry B, 2015, 3, (28), 5760-5768. DOI: https://doi.org/10.1039/C5TB00599J
[10] D. Li, T. Wu, N. He, J. Wang, W. Chen, L. He, C. Huang, H.A. Ei-Hamshary, S.S. Al-Deyab, Q. Ke*, X. Mo*, Three-dimensional polycaprolactone scaffold via needleless electrospinning promotes cell proliferation and infiltration, Colloids and Surfaces B: Biointerfaces, 2014, 121, 432-443. DOI: https://doi.org/10.1016/j.colsurfb.2014.06.034
[9] A. Yin, J. Li, G.L. Bowlin, D. Li, I.A. Rodriguez, J. Wang, T. Wu, H.A. Ei-Hamshary, S.S. Al-Deyab, X. Mo*, Fabrication of cell penetration enhanced poly (l-lactic acid-co-ɛ-caprolactone)/silk vascular scaffolds utilizing air-impedance electrospinning, Colloids and Surfaces B: Biointerfaces, 2014, 120, 47-54. DOI: https://doi.org/10.1016/j.colsurfb.2014.04.011
[8] H. Li, T. Wu, Y. Zheng, H. El-Hamshary, S.S. Al-Deyab, X. Mo*, Fabrication and characterization of Mg/P (LLA-CL)-blended nanofiber scaffold, Journal of Biomaterials Science, Polymer Edition, 2014, 25, (10), 1013-1027. DOI: https://doi.org/10.1080/09205063.2014.918456
[7] D. Li, T. Wu, C. Huang, Q. Ke, X. Mo*, Disc-electrospun nano/macro-scale PCL fibers with nanoporous structure, Advanced Materials Research, 2014, 893, 124-127. DOI: https://doi.org/10.4028/www.scientific.net/AMR.893.124
[6] W. Liu, J. Zhan, Y. Su, T. Wu, S. Ramakrishna, S. Liao, X. Mo*, Injectable hydrogel incorporating with nanoyarn for bone regeneration, Journal of Biomaterials Science, Polymer Edition, 2014, 25, (2), 168-180. DOI: https://doi.org/10.1080/09205063.2013.848326
[5] T. Wu, C. Huang, J. Chen, W. Liu, X. Mo*, Fabrication of multi-layered composite scaffolds by bi-directional electrospinning method, Journal of Donghua University (Eng. Ed.) Vol, 2014, 31, (5).
[4] J. Chen, W. Liu, T. Wu, D. Li, J. Zhang, N. Wang, X. Mo*, Fabrication of a bi-layer tubular scaffold consisted of a dense nanofibrous inner layer and a porous nanoyarn outer layer for vascular tissue engineering, Journal of Donghua University (Eng. Ed.) Vol, 2014, 31, (5).
[3] W. Liu, J. Zhan, Y. Su, T. Wu, C. Wu, S. Ramakrishna, X. Mo*, S.S. Al-Deyab, M. El-Newehy, Effects of plasma treatment to nanofibers on initial cell adhesion and cell morphology, Colloids and Surfaces B: Biointerfaces, 2014, 113, 101-106. DOI: https://doi.org/10.1016/j.colsurfb.2013.08.031
[2] W. Liu, J. Zhan, T. Wu, Y. Su, X. Mo*, S. Liao, S. Ramakrishna, Mineralized composite nanofibrous mats for bone tissue engineering, Journal of Donghua University (Eng. Ed.) Vol, 2013, 30, (5).
[1] J. Fang, A. Yin, C. Wu, D. Li, T. Wu, L. He, F. Han, X. Mo*, Synthesis and characterization of biodegradable poly (ester-urethane) urea for nerve tissue engineering, Journal of Controlled Release, 2013, 1, (172), e130. DOI: https://doi.org/10.1016/j.jconrel.2013.08.208
学术论文(中文,*通讯)
[6] 王睛, 杨宏珊, 李欣然, 高子茹, 马欣玥, 房宽峻, 王元非, 吴桐*. 静电纺天然生物材料纳米纤维的制备及创面修复应用[J]. 纺织科学研究, 2024, 11 (234).
[5] 于承浩, 王元非, 于腾波, 吴桐*. 热致自卷曲左旋聚乳酸/聚乳酸-羟基乙酸共聚物纳米纤维血管支架制备及其性能[J]. 纺织学报, 2024, 45 (7).
[4] 郭青霞, 王玥, 吴桐*. 负载Scriptaid甲基丙烯酰化丝素蛋白水凝胶调控小胶质细胞的极化行为[J]. 中国组织工程研究, 2024, 28 (29).
[3] 王薇, 刘宇, 王元非, 吴桐, 周华, 房宽峻*. 聚酯纤维织物的碱减量处理及其对明胶涂层牢度的影响[J]. 纺织科学与工程学报, 2022, (02), 58-63.
[2] 汪涛, 陈剑锋, 赵珺*, 吴桐, 莫秀梅, 梅家才, 张健, 邵明哲, 潘烨, 吴海生. 聚左乳酸己内酯-胶原蛋白静电纺人工血管的降解研究[J]. 中国生物医学工程学报, 2014, 33 (06), 746-752.
[1] 吴桐, 黄晨, 莫秀梅*. 新型组织工程血管材料:静电纺复合纳米纤维小口径管状支架[J]. 中国组织工程研究, 2013, 17 (29), 5387-5394.
英文专著
[4] T. Wu, Y. Wang, Z. Zhou, X. Zhang, N. Liu, Z. Feng, X. Mo, W. Cui, Electrospinning techniques, Biofabrication for Orthopedics: Methods, Techniques and Applications, WILEY-VCH Publishing, 2022, 1, 133-158. DOI: https://doi.org/10.1002/9783527831371.ch5
[3] X. Mo, B. Sun, T. Wu, D. Li, Electrospun nanofibers for tissue engineering, electrospinning: nanofabrication and applications, William Andrew Publishing, 2019, pp. 719-734. DOI: https://doi.org/10.1016/B978-0-323-51270-1.00024-8
[2] X. Mo, T. Wu, B. Sun, H. EI-Hamshary, Nanofiber composites in tendon tissue engineering, nanofiber composites for biomedical applications, Woodhead Publishing, 2017, pp. 345-367. DOI: https://doi.org/10.1016/B978-0-08-100173-8.00014-4
[1] X. Mo, B. Sun, T. Wu, H. Ei-Hamshary, Nanofiber composites in neural tissue engineering, nanofiber composites for biomedical applications, Woodhead Publishing, 2017, pp. 395-410. DOI: https://doi.org/10.1016/B978-0-08-100173-8.00016-8
发明专利
[13] 吴桐,王元非,刘英楠,刘娜,张小佩,一种控制药物按需释放的口腔贴片及其制备方法和应用,中国发明专利;
[12] 吴桐,宁胥超,王元非,陈振雨,一种具有三维多孔结构的气凝胶人工皮肤及其制备方法,中国发明专利;
[11] 吴桐,王元非,周子艺,柴清东,一种负载双向梯度ECM涂层的血管修复支架及其制备方法,中国发明专利;
[10] 吴桐,于承浩,于腾波,王元非,陈仁杰,一种脱细胞肌腱复合体材料及其制备方法,中国发明专利;
[9] 吴桐,王玥,李环廷,王元非,一种多层级生物活性纳米纤维人工硬脑膜及其制备方法,中国发明专利;
[8] 吴桐,于承浩,于腾波,王元非,陈仁杰,张小佩,刘娜,一种仿生天然肌腱-骨梯度界面的补片材料及其制备方法,中国发明专利;
[7] 吴桐,周子艺,冷向锋,刘娜,王元非,张小佩,宁胥超,一种功能一体化的多层级皮肤创面修复支架及其制备方法,中国发明专利;
[6] 吴桐,张小佩,王元非,刘娜,周子艺,于承浩,一种聚合物纳米纤维-微粒光焊复合微球及其制备方法和应用,中国发明专利;
[5] 莫秀梅,吴桐,王元非,李丹丹,孙彬彬,一种PLGA三维神经导管及其制备方法,中国发明专利;
[4] 莫秀梅,吴桐,黄晨,一种乳酸己内酯共聚物/胶原蛋白/壳聚糖小口径纳米纤维血管支架的制备方法,中国发明专利;
[3] 莫秀梅,吴桐,王元非,一种肝素与双生因子协同调控的P(LLA-CL)/胶原蛋白双层血管支架的制备方法,中国发明专利;
[2] 莫秀梅,吴桐,王元非,一种聚乳酸己内酯-胶原蛋白双层仿生血管支架的制备方法,中国发明专利;
[1] 莫秀梅,吴桐,王元非,李丹丹,一种仿生天然血管三层结构的复合材料血管支架及其制备方法,中国发明专利;