2023
Journal Publications
2023
[50] Z. Wang*, M. Xie, Z. Zhan, Y. Li, P. Cheng, Y. Chen, Functional Microfluidic devices: theory, microfabrication, and application, under review.
[49] Z. Wang*, Y. Wei, C. Zhang, P. Cheng, Y. Shuai, Flexible solar absorber based on PDMS and multiple-materials nanostructures, under review.
[48] Z. Wang*, Y. Wei, D. Yang, Highly robust metamaterial absorber with bioinspired nanochannels for solar energy harvesting, under review.
[47] Z. Wang*, M. Xie, Q. Guo, Y. Liao, C. Zhang, P. Cheng, H. Duan, Y. Chen, Z. Dong, Hyper-anti-freezing bionic functional surface to -90 ℃, under review.
[46] M. Xie, Z. Zhan, W. Xu, C. Zhang, Y. Chen, Z. Dong, Z. Wang*, Programmable microfluidics, Small, 2023.
[45] J. Zhao, M. Xie, K. Yang, D. Wei, C. Zhang, Z. Wang*, X. Yang, Three-Dimensionally Multiple Protected Silicon Anode Toward Ultrahigh Areal Capacity and Stability, Journal of Colloid and Interface Science, 2023.
[44] Z. Wang*, Q. Yin, Z. Zhan, H. Duan, P. Cheng, C. Zhang, Y. Chen, Z. Dong, 3D-printed bionic abnormal shaped microchannel for step lifting transpiration, International Journal of Extreme Manufacturing, 5 (2023) 02550.
[43] J. Zhao, W. Li, M. Xie, K. Yang, D. Wei, Z. Chen, C. Zhang, Z. Wang*, X. Yang, Advanced Self-healing Silicon-based Anodes for All Solid Lithium-ion Batteries, Advanced Materials Technologies, 2023.
[42] Z. Zhan, L. Chen, C. Wang, Y. Shuai, H.. Duan, Z. Wang*, Super water-storage self-adhesive gel for solar vapor generation and collection, ACS Applied Materials & Interfaces, 15, 6 (2023) 8181-8189.
[41] J. Zhao, D. Wei, J. Wang, K. Yang, C. Zhang, Z. Wang*, X Yang, Expired milk powder emulsion-derived carbonaceous framework/Si composite as efficient anode for lithium-ion batteries, 638 (2023) 99-108.
[40] W. Li, K. Lin, L. Chen, D. Yang, Q. Ge, Z. Wang*, Self-powered wireless flexible ionogel wearable devices, ACS Applied Materials & Interfaces, 15 (2023) 14768-14776.
[39] A. Guo, J. Zhao, K. Yang, M. Xie, Z. Wang*, X. Yang, Design and synthesis of NiCo-NiCoO2@C composites with improved lithium storage performance as the anode materials, Journal of Colloid and Interface Science, 631 (2023) 112-121.
[38] M. He, Y. Sun, Z. Wang, B. Wang, Micro/nanomaterials for heat transfer, energy storage and conversion, Coatings 13 (2023) 11.
2022
[37] Z. Wang*, Y. Li, S. Gong, W. Li, H. Duan, P. Cheng, Y. Chen, Z. Dong, Three-dimensional open water microchannel transpiration-mimetics, ACS Applied Materials & Interfaces, 14 (2022) 30435–30442.
[36] Z. Wang*, Z. Zhan, L. Chen, G. Duan, P. Cheng, H. Kong, Y. Chen, H. Duan, 3D-printed bionic solar evaporator, Solar RRL, (2022) 2101063.
[35] Z. Wang*, Z. Liu, C. Zhang, D. Yang, P. Cheng, Y. Shuai, Notched nanoring wideband absorber for total solar energy harvesting, Solar Energy, 243 (2022) 153–162.
[34] Z. Wang*, Z. Liu, G. Duan, L. Fang, H. Duan, Ultrahigh broadband absorption in metamaterials with electric and magnetic polaritons enabled by multiple materials, International Journal of Heat and Mass Transfer, 185 (2022) 122355.
[33] Z Wang, W. Li, L. Chen, Z. Zhan, H. Duan, 3D printable silicone rubber for long-lasting and weather-resistant wearable devices, ACS Applied Polymer Materials, 4 (2022) 2384-2392.
[32] Z. Wang*, H. Song, L. Chen, W. Li, D. Yang, P. Cheng, H. Duan, 3D printed ultra-sensitive graphene hydrogel self-adhesive wearable devices, ACS Applied Electronic Materials, 2022, 4, 11, 5199–5207.
[31] Z. Wang*, Y. Wei, Z. Liu, G. Duan, D.Yang, P. Cheng, Perfect Solar Absorber with Extremely Low Infrared Emissivity, Photonics, 9 (2022) 574.
[30] M. Xie, H. Duan, P. Cheng, Y. Chen, Z. Dong, Z. Wang*, Underwater unidirectional cellular fluidics, ACS Applied Materials & Interfaces, 14 (2022) 9891–9898.
[29] L. Chen, G. Duan, C. Zhang, P. Cheng, Z. Wang*, 3D printed hydrogel for soft thermo-responsive smart window, International Journal of Extreme Manufacturing, 4 (2022) 025302.
[28] Z. Liu, G. Duan, H. Duan, Z. Wang*, Nearly perfect absorption of solar energy by coherent of electric and magnetic plasmons, Solar Energy Materials and Solar Cells, 240 (2022) 111688.
[27] Y. Zhang, L. Chen, M. Xie, Z. Zhan, D. Yang, P. Cheng, H. Duan, Q. Ge, Z. Wang*, Ultra-fast programmable human-machine interface enabled by 3D printed degradable conductive hydrogel, Materials Today Physics, 2022, 100794.
[26] J. Zhao, D. Wei, J. Wang, Z. Wang*, Z. Chen, S. Zhang, C. Zhang, X. Yang, Inorganic crosslinked supramolecular binder with fast self-healing for high performance silicon based anodes in lithium-ion batteries, Journal of Colloid and Interface Science, 625 (2022) 373–382.
[25] J. Zhao, K. Bao, M. Xie, D. Wei, K. Yang, X. Zhang, C. Zhang, Z. Wang*, X. Yang, Two-dimensional ultrathin networked CoP derived from Co(OH)2 as efficient electrocatalyst for hydrogen evolution, Advanced Composites and Hybrid Materials, 5 (2022) 2421-2428.
[24] G. Duan, C. Zhang, D. Yang, Z. Wang*, Bionic spatial 3D-arrayed multifocal metalens, Biomimetics, 7 (2022) 200.
2021
[23] Z. Zhan, L. Chen, H. Duan, Y. Chen, M. He, Z. Wang*, 3D printed ultra-fast photothermal responsive shape memory hydrogel for microrobot, International Journal of Extreme Manufacturing, 4 (2022) 015302.
[22] L. Chen, Z. Zhou, Y. Zhang, H. Duan, Z. Wang*, Poly (HBA-co-AMPS) based hydrogel by PμSL 3D printing for robotic sensor, 2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), 2021, 13-17.
[21] Z. Wang, G. Duan, H. Duan, Optimization of the perfect absorber for solar energy harvesting based on the cone-like nanostructures, AIMS Energy, 9(4) (2021) 714–726.
[20] L. Chen, Z. Wang*, Z. Zhan, M. Xie, Y. Zhang, P. Cheng, Y. Chen, H. Duan, 3D printed super-anti-freezing self-adhesive human-machine interface, Materials Today Physics, 19 (2021) 100404.
[19] Q. Yin, Q. Guo, Z. Wang*, Y. Chen, H. Duan, P. Cheng, 3D-printed bio-inspired Cassie-Baxter wettability for controllable micro-droplet manipulation, ACS Applied Materials & Interfaces, 13 (2021) 1979−1987.
[18] Y. Liao, H. Duan, P. Liu, Y. Chen, Z. Wang*, 3D printed complex microstructures with self-sacrificial structure enabled by grayscale polymeric and ultrasonic treatment, ACS Omega, 6 (2021) 18281−18288.
[17] L. Chen, Y. Zhang, H. Ye, G. Duan, H. Duan, Q. Ge, Z. Wang*, Color-changeable four-dimensional printing enabled with ultraviolet curable and thermochromic shape memory polymers, ACS Applied Materials & Interfaces, 13 (2021) 18120−18127.
2020
[16] Z. Wang, G. Qi, P. Yang, Z. Zhang, P. Cheng, An experimental study of a nearly perfect absorber made of a natural hyperbolic material for harvesting solar energy, Journal of Applied Physics, 127 (2020) 233102.
[15] Z. Wang, L. Chen, Y. Chen, P. Liu, H. Duan, P. Cheng, 3D Printed Ultrastretchable, Hyper-Antifreezing Conductive Hydrogel for Sensitive Motion and Electrophysiological Signal Monitoring, Research, 2020, 1426078.
[14] Q. Ge, Z. Li, Z. Wang*, K. Kowsari, W. Zhang, X. He, J. Zhou, N. Fang, Projection micro stereolithography based 3D printing and its applications, International Journal of Extreme Manufacturing, 2 (2020) 022004.
[13] Y. Song, Q. Liu, Z. Wang*, Y. Chen, H. Duan, P. Cheng, Super-wetting surfaces with an array of SU-8 micro-pillars enabled by ion-beam etching, Journal of Micromechanics and Microengineering, 30 (2020) 115010.
[12] Q. Liang, Q. Yin, L. Chen, Z. Wang*, X. Chen, Perfect spectrally selective solar absorber with dielectric filled fishnet tungsten grating for solar energy harvesting, Solar Energy Materials and Solar Cells, 215 (2020) 110664.
[11] Z. Chen, S. Zhang, Y. Chen, P. Li, Z. Wang, X. Zhu, K. Bi, H. Duan, Double fano resonances in hybrid disk/rods artificial plasmonic molecules based on dipole-quadrupole coupling, Nanoscale, 12.17 (2020) 9776-9785.
[10] Y. Chen, Y. Hu, J. Zhao, Y. Deng, Z. Wang, X. Cheng, D. Lei, Y. Deng, H. Duan, Topology optimization-based inverse design of plasmonic nanodimer with maximum near-field enhancement, Advanced Functional Materials, (2020) 2000642.
2019
[9] Z. Wang, P. Cheng, Enhancements of absorption and photothermal conversion of solar energy enabled by surface plasmon resonances in nanoparticles and metamaterials (invited review), International Journal of Heat and Mass Transfer, 140 (2019) 453-482.
[8] Y. Chen, S. Zhang, Z. Shu, Z. Wang, P. Liu, C. Zhang, Y. Wang, Q. Liu, H. Duan, Y. Liu, Adhesion-engineering-enabled "sketch and peel" lithography for aluminum plasmonic nanogaps, Advanced Optical Materials, (2019) 1901202.
2018
[7] Z. Wang, Z. Zhang, X. Quan, P. Cheng, A numerical study on effects of surrounding medium, material, and geometry of nanoparticles on solar absorption efficiencies, International Journal of Heat and Mass Transfer 116 (2018) 825–832.
[6] Z. Wang, Z. Zhang, X. Quan, P. Cheng, A perfect absorber design using a natural hyperbolic material for harvesting solar energy, Solar Energy 159 (2018) 329–336.
[5] Z. Wang, Z. Zhang, P. Cheng, Natural anisotropic nanoparticles with a broad absorption spectrum for solar energy harvesting, International Communications in Heat and Mass Transfer, 96 (2018) 109–113.
[4] Z. Wang, X. Quan, Z. Zhang, P. Cheng, Optical absorption of carbon-gold core-shell nanoparticles, Journal of Quantitative Spectroscopy & Radiative Transfer 205 (2018) 291–298.
2017 and before
[3] Z. Wang, X. Li, D. Chen, X. Quan, P. Cheng, Experimental investigation on bubble nucleation in flow boiling of a nanofluid with plasmon resonance effects irradiated by a pulsed laser beam, China Science paper, 12(23) (2017) 2651-2655.
[2] Z. Wang, X. Quan, W. Yao, L. Wang, P. Cheng, Plasma resonance effects on bubble nucleation in flow boiling of a nanofluid irradiated by a pulsed laser beam, International Communications in Heat and Mass Transfer 72 (2016) 90–94.
[1] Z. Wang, X. Quan, Z. Zhang, P. Cheng, Numerical studies on absorption characteristics of plasmonic metamaterials with an array of nanoshells, International Communications in Heat and Mass Transfer 68 (2015) 172–177.
Book Chapter
[1] Z. Wang, Ping Cheng, Solar Energy Harvesting by Perfect Absorbers Made of Natural Hyperbolic Material, Nature Springer.
Presentation
[1] Z. Wang, M. Xie, Z. Zhan, Bionic low-carbon functional devices and its 3D printing technique, The 5th innovation forum of microfluidic technology & application, China micro-nano technology Society, Guangzhou, China, 2022.07.
[2] Z. Wang, M. Xie, Z. Zhan, Low-carbon functional devices and its micro/nanoscale fabrication methods, Online Forum of Extreme Manufacturing, 2022.06, online.
[3] Z. Wang, Z. Zhang, P. Cheng, Optical absorption of graphene-coated nanoparticles and graphene nanoshells, The 16th International Heat Transfer Conference, Beijing, China, 2018.
[4] Z. Wang, Z. Zhang, X. Quan, P. Cheng, Perfect Absorption in the Broad Solar Spectrum with Bi2Te3 Hyperbolic Metamaterials, in: Advanced Photonics Congress, New Orleans, United State, 2017.
[5] Z. Wang, X. Quan, Z. Zhang, P. Cheng, Absorption Property and Heat Dissipation of Carbon-Gold Core-Shell Nanoparticles, in: 3rd International Workshop on Nano-Micro Thermal Radiation, KAIST in Daejeon, Korea, 2017.
[6] Z. Wang, X. Li, X. Quan, W. Yao, P. Cheng, Plasmon resonance effects on bubble nucleation in flow boiling of a nanofluid irradiated by a continuous laser beam, in: Proceedings of the 9th International Symposium on Heat Transfer ISTH-9, Beijing, China, 2016.
[7] L. Chen, Z. Zhou, Y. Zhang, H. Duan, Z. Wang*, Poly (HBA-co-AMPS) based Hydrogel by PμSL 3D Printing for Robotic Sensor, The IEEE 27TH International Conference on Mechatronics and Machine Vision in Practice (M2VIP 2021), Shanghai. China, 2021.
Patent
1、王兆龙,王睿卓,樊润鸿,陈雷,段辉高,一种可实现Z轴高精度控制的挤出式3D打印装置及方法,ZL 202010131777.7
2、王兆龙,陈雷,张艺茹,段辉高,一种可调光源波长的高精度大面积快速3D打印装置及方法,ZL 202010131775.8
3、王兆龙,谢祺晖,段辉高,张艺茹,鲍忠旭,一种可手动调节分辨率、多轴、可变光波波长的光固化3D打印装置,ZL 202010131774.3
4、王兆龙,单武斌,段辉高、刘鹏,一种可实现同步打印的多轴多材料多光源光固化3D快速打印装置及方法,ZL 202010131781.3
5、段辉高,单武斌,王兆龙,刘鹏,一种多轴光固化3D微纳加工设备及方法,ZL 202010131785.1
6、陈雷,张艺茹,王兆龙,段辉高,一种光固化3D打印用抗冻导电水凝胶及其制备方法,ZL 202010131788.5
7、单武斌,段辉高,王兆龙,陈雷,一种树脂材料匹配相应光源用的多轴光固化3D微纳加工设备及其方法,中国,202010131780.9
8、李平,段辉高,王兆龙,一种离子束抛光的大面积单片集成Fabry-Pérot腔滤色器制造方法,202010131789.X
9、李平,段辉高,王兆龙,一种离子束抛光单片集成Fabry-Pérot腔全彩滤光片大批量制造方法,ZL 202010131793.6
10、李平,段辉高,王兆龙,一种制造微纳米台阶阵列结构的离子束抛光加工方法,202010131772.4
11、谢祺晖,王兆龙,段辉高,单武斌,一种多材料光固化3D打印设备,中国,202010131791.7
12、谢祺晖,王兆龙,段辉高,一种多材料光固化3D打印装置及方法,中国,202010131773.9
13、段辉高,张艺茹,单武斌,王兆龙,一种可实现混合材料用的多轴光固化3D打印装置及方法,中国,202010131792.1
14、李平,段辉高,王兆龙,一种基于微结构的超浸润表面及其制备方法,2020.02.29,中国,202010131779.6 (发明专利,申请)
15、靳世平,王兆龙,余旭,袁彪,吴星,张三霞,分布式空调系统,201020142447