23563
Current Page: Home   >  Research
Research

Focusing on the scientific and technological strategy of "carbon peaking and carbon neutrality", our group mainly carried out research on new energy and photoelectric function materials, including:


1.  Photoelectrochemical Catalysis

(1) Photoelectrochemical Water Splitting

I: Construction hematite composite photoanodes via combing elemental doping, heterojunction, electrochemical catalysts for enhanced PEC water splitting;

II: Systematically investigaing the surface/interfaces structure and correlating it with the surface state evoluion of hematite photoanodes to elucidate the reaction mechanism.

[1] P.Y. Tang, H.B. Xie, C. Ros, L.J. Han, M. Biset-Peiró, Y.M. He, W. Kramer, A. Perez-Rodriguez, E. Saucedo, J.R. Galan-Mascaros, T. Andreu, J.R. Morante, J. Arbiol,* Enhanced Photoelectrochemical Water Splitting of Hematite Multilayer Nanowire Photoanodes with Tuning Surface State via Bottom-up Interfacial Engineering, Energy & Environmental Science, 2017, 10, 2124.

[2] P.Y. Tang, L.J. Han, F.S. Hegner, P. Paciok, M. Biset-Peiró, H.C. Du, X.K. Wei, L. Jin, H.B. Xie, Q. Shi, T. Andreu, M. Lira-Cantú, M. Heggen, R.E. Dunin-Borkowski, N. López, J.R. Galán-Mascarós, J.R. Morante,* J. Arbiol,* Boosting Photoelectrochemical Water Oxidation of Hematite in Acidic Electrolytes by Surface State Modification, Advanced Energy Materials, 2019, 9, 1901836.

[3] P.Y. Tang, J. Arbiol,* Engineering Surface States of Hematite Based Photoanodes for Boosting Photoelectrochemical Water Splitting , Nanoscale Horizons, 2019, 4, 1256.

[4] G.P. Yi, Q. Wang, J. Arbiol,* P.Y. Tang,* Emerging Metal Oxide/Nitride Protection Layers for Enhanced Stability of Silicon Photoelectrodes in Photoelectrochemical Catalysis: Recent Advancements and Challenges, Materials Today Chemistry, 2023, 34, 101795.

[5] Q. Wang,* X.F. Yang, Z. Jing, H. Liu, P.Y. Tang,* H.M. Zhu, B. Li,* Recent advances in one-dimensional alkali-metal hexatitanate photocatalysts towards environmental remediation and solar fuel production, Journal of Materials Science & Technology, 2024, 202, 201-239.


(2) Electrochemical CO2 Reduction

Manipulating the atomic structure of single atom catalysts through controlling MOF precursors for enhanced electrochemical CO2 reduction performance. Via utilizing Cs-corrected TEM, synchrotron radiation and DFT caculations etc. to reveal the deep reaction mechanism of single atom catalysts for electrochemical CO2 reduction.


[1] T. Zhang, X. Han, H. Liu, M.B. Peiro, X. Zhang, P.P. Tan, P.Y. Tang,* B. Yang, L.R. Zheng,* J.R. Morante, J. Arbiol,* Quasi-Double-Star Nickel and Iron Active Sites for High-Efficiency Carbon Dioxide Electroreduction, Energy & Environmental Science, 2021, 14, 4847-4857.

[2] Z.F. Liang, J.H. Wang,†, P.Y. Tang, W.Q. Tang, L.J. Liu, M. Shakouri, X. Wang, J. Llorca, S.L. Zhao, M. Heggen, R.E. Dunin-Borkowski, A. Cabot, H.B. Wu, J. Arbiol, Molecular Engineering to Introduce Carbonyl Between Nickel Salophen Active Sites to Enhance Electrochemical CO2 Reduction to Methanol, Applied Catalysis B: Environmental, 2022, 314, 121451.

[3] H. Liu,† J.J. Li,† J. Arbiol,* B. Yang,* P.Y. Tang,* Catalytic Reactivity Descriptors of Metal-nitrogen-doped Carbon Catalysts for Electrocatalysis, EcoEnergy, 2023, 1, 154-185. 


2. Ex-situ(In-situ) Cs corrected TEM and related spectrum

Via using ex-situ(In-situ) Cs corrected TEM and related spectrum technologies, such as Cs TEM, HAADF, GPA, EELS and EDX, we sussessfully correlated the elemental composition, heterojunction, grain boundary, vacancy and single atom etc. with energy and catalytic materials application's performance.

(1) Electrochemical Catalysis Materials

[1] Y.M. He,†  P.Y. Tang, † Z.L. Hu,† Q.Y. He,† L.Q. Wang, Q.S. Zeng, P. Golani, G.H. Gao, C. Zhu, W. Fu, C.T. Gao, J. Xia, X.L. Wang, X.W. Wang, C. Zhu, Q.M. Ramasse, A. Zhang, J.R. Morante, L. Wang, B.K. Tay, B. Yakobson, A. Trampert, H. Zhang, M.H. Wu,* Q.J. Wang, J. Arbiol,* Z. Liu,* Engineering Grain Boundaries at the 2D Limit for the Hydrogen Evolution Reaction, Nature Communications , 2020, 11, 1.

[2] L.J. Han, P.Y. Tang, A. Reyes-Carmona, B. Rodriguez-Garcia, M. Torrens, J. R. Morante, J. Arbiol, J. R. Galan-Mascaros,* Enhanced activity and acid pH stability of prussian blue-type oxygen evolution electrocatalysts processed by chemical etching, Journal of the American Chemical Society, 2016, 138, 16037-16045.

[3] P.F. Cao,† P.Y. Tang,† M.F. Bekheet, H.C. Du, L.Y. Yang, L. Haug, A. Gili, B. Bischoff, A. Gurlo, M. Kunz, R. E. Dunin-Borkowski, S. Penner, M. Heggen*, Atomic-Scale Insights into Nickel Exsolution on LaNiO3 Catalysts via In Situ Electron Microscopy, J. Phys. Chem. C, 2022, 126, 1, 786-796.

[4] Z.F. Liang,† D.C. Jiang,† X. Wang, M. Shakouri, T. Zhang, P.Y. Tang,* J. Llorca, L.J. Liu,* M. Heggen, R. E. Dunin-Borkowski, A. Cabot,* J. Arbiol,* Molecular Engineering to Tune the Ligand Environment of Atomically Dispersed Nickel for Efficient Alcohol Electrochemical Oxidation, Advanced Functional Materials, 2021, 31, 2106349.

[5] D.W. Yang,† Z.F. Liang,† P.Y. Tang,† C.Q. Zhang, M.X. Tang, Q.Z. Li, J.J. Biendicho, J.S. Li, M. Heggen, R.E. Dunin-Borkowski, M. Xu, J. Llorca, J. Arbiol,* J.R. Morante, S.L. Chou,* A. Cabot,* A High Conductivity One-Dimensional π-d Conjugated Metal-Organic Framework with Efficient Polysulfide Trapping-Diffusion-Catalysis in Lithium-Sulfur Batteries, Advanced Materials, 2022, 34, 2108835.

[6] Z.F. Liang,† D.W. Yang,† P.Y. Tang,† C.Q. Zhang, J.J. Biendicho, Y. Zhang, J. Llorca, X. Wang, J.S. Li, M. Heggen, J. David, R.E. Dunin-Borkowski, Y.T Zhou,* J.R. Morante, A. Cabot,* J. Arbiol*, Atomically dispersed Fe in C2N based Catalyst as Sulfur Host for Efficient Lithium-Sulfur Batteries, Advanced Energy Materials, 2021, 11, 2003507.


(2) Hybrid Organic-Inorganic Perovskites

[1] L.C. Zhao,† P.Y. Tang,† D.Y. Luo, M. Ibrahim Dar,* F.T. Eickemeyer, N. Arora, Q. Hu,* J.S. Luo, Y.H. Liu,* S.M. Zakeeruddin, A. Hagfeldt, J. Arbiol, W. Huang, Q.H. Gong, T.P. Russell, R.H. Friend, M. Grätzel,* R. Zhu*, Enabling Full-Scale Grain Boundary Mitigation in Polycrystalline Perovskite Solids, Science Advances, 2022, 8, eabo3733.

[2] Q.Y. Li, H. Liu, C.H. Hou, H.M. Yan, S.D. Li, P. Chen, H.Y. Xu, W.Y. Yu, Y.P. Zhao, Y.P. Sui, Q.X. Zhong, Y.Q. Ji, J.J. Shyue, S. Jia, B. Yang, P.Y. Tang, Q.H. Gong, L.C. Zhao*, R. Zhu*, Harmonizing the bilateral bond strength of the interfacial molecule in perovskite solar cells, Nature Energy, 2024, DOI: 10.1038/s41560-024-01642-3.

[3] P. Chen,† Y. Xiao,† J.T. Hu,† S.D. Li,† D.Y. Luo,* R. Su, P. Caprioglio, P. Kaienburg, X.H. Jia, N. Chen, J.J. Wu, Y.P. Sui, P.Y. Tang, H.M. Yan, T.Y. Huang, M.T. Yu, Q.Y. Li, L.C. Zhao, C.H. Hou, Y.W. You, J.J. Shyue, D.K. Wang, X.J. Li, Q. Zhao, Q.H. Gong,* Z.H. Lu,* H.J. Snaith*, R. Zhu*,  Multifunctional ytterbium oxide buffer for perovskite solar cells, Nature, 2024, 625, 516–522.

[4] H.B. Xie,† Z.W. Wang,† Z.H. Chen, M. Pols, K. Gałkowski, M. Anaya, S. Fu, X.Y. Jia, P.Y. Tang, D.J. Kubicki, A. Agarwalla, H.S. Kim, D. Prochowicz, X. Borrisé, C. Pereyra, M. Bonn, S. M. Zakeeruddin, L. Emsley, J. Arbiol, H. I. Wang, K.J. Tielrooij, S.D. Stranks, S.X. Tao, M. Grätzel, A. Hagfeldt,* M. Lira-Cantu,* Decoupling the effects of defects on efficiency and stability through phosphonates in stable halide perovskite solar cells, Joule, 2021, 5, 1246-1266.

[5]  Y.Q. Yang, G.D. Li,† L.C. Zhao,† P.J. Tan, Y. Li,* S.D. Li, L.N. Tan, C.Y. Deng, S.B. Wang, Z.Z. Zhao, C.J. Yuan, H.H. Ding, L. Chen, J.F. Zhu, Y. Guan, C.H. Hou, P.Y. Tang, Q.Y. Li, H. Liu, Y.G. Yang, A. Abate, J.J. Shyue, J.H. Wu,* T.P. Russell, Q. Hu*, A Catalyst-like System Enables Efficient Perovskite Solar Cells, Advanced Materials, 2024, 36, 2311145.