25921
当前位置: 首页   >  研究方向
研究方向

面向“碳达峰、碳中和“国家重大科技战略,我们结合理论计算-先进合成-前沿表征-光电性能,开展了新能源光电催化材料表界面原子结构和原理机制方面的研究工作,主要关注以下两个研究方向:

1.  光电催化

三氧化二铁作为光电催化分解水制氢的阳极材料,具有带隙适宜、地球含量丰富、理论光电流高等特点。但是,三氧化二铁较差的导电性、光生电荷重新组合和迟缓的光电催化水氧化动力学等限制了其光电流响应。鉴于此,如图1所示,系统开展了协同调控三氧化二铁光阳极掺杂元素、异质结、电化学助催化剂,构建分级异质结光阳极,优化其表界面结构和表面态以促进其光电催化分解水性能方面的研究工作。

图1. (a): 光照下,电压1.23V vs RHE.时,各分级光阳极的半导体电极/电解液界面(SEI)的电荷转移示意图和各复合光阳极原子模型示意图。(b):分级FTO/ITO/Fe2O3/Fe2TiO5/FeNiOOH异质结光阳极的STEM和EELS mapping图;(c):光电催化分解水性能;(d):研究工作以前封面发表于Energy Environ. Sci.;(e):2018年International Conference on Renewable Energy国际会议颁发的“Energy Environ. Sci.”最佳海报奖。

[1] P.Y. Tang, H.B. Xie, C. Ros, L.J. Han, M. Biset-Peiró, Y.M. He, W. Kramer, A. Perez-Rodriguez, E. Saucedo, J.R. Galan-Mascaros, T. Andreu, J.R. Morante, J. Arbiol,* Enhanced Photoelectrochemical Water Splitting of Hematite Multilayer Nanowire Photoanodes with Tuning Surface State via Bottom-up Interfacial Engineering, Energy & Environmental Science, 2017, 10, 2124.

[2] P.Y. Tang, L.J. Han, F.S. Hegner, P. Paciok, M. Biset-Peiró, H.C. Du, X.K. Wei, L. Jin, H.B. Xie, Q. Shi, T. Andreu, M. Lira-Cantú, M. Heggen, R.E. Dunin-Borkowski, N. López, J.R. Galán-Mascarós, J.R. Morante,* J. Arbiol,* Boosting Photoelectrochemical Water Oxidation of Hematite in Acidic Electrolytes by Surface State Modification, Advanced Energy Materials, 2019, 9, 1901836.

[3] T. Zhang, X. Han, H. Liu, M.B. Peiro, X. Zhang, P.P. Tan, P.Y. Tang,* B. Yang, L.R. Zheng,* J.R. Morante, J. Arbiol,* Quasi-Double-Star Nickel and Iron Active Sites for High-Efficiency Carbon Dioxide Electroreduction, Energy & Environmental Science, 2021, 14, 4847-4857.

[4] Z.F. Liang,† D.C. Jiang,† X. Wang, M. Shakouri, T. Zhang, P.Y. Tang,* J. Llorca, L.J. Liu,* M. Heggen, R. E. Dunin-Borkowski, A. Cabot,* J. Arbiol,* Molecular Engineering to Tune the Ligand Environment of Atomically Dispersed Nickel for Efficient Alcohol Electrochemical Oxidation, Advanced Functional Materials, 2021, 31, 2106349.

[5] P.Y. Tang, J. Arbiol,* Engineering Surface States of Hematite Based Photoanodes for Boosting Photoelectrochemical Water Splitting , Nanoscale Horizons, 2019, 4, 1256.

[6] Q. Wang,* X.Q. Zhan, C.M. Fan, X.F. Yang, B. Li, H. Liu,* Y.J. Wu, K.H. Zhang, P.Y. Tang,* Rational design of versatile 1D Ti-O-based core-shell nanostructures for efficient pollutant removal and solar fuel production, Journal of Materials Chemistry A, 2024, 12, 33290-33300.

[7] J.F. Liu,* T. Li, Q.X. Wang, H.T. Liu, J.J. Wu, Y.P. Sui, H.M. Li, P.Y. Tang,* Y. Wang,*  Bifunctional PdMoPt trimetallene boosts alcohol-water electrolysis, Chemical Science, 2024, 15, 16660-16668.

[8] G.P. Yi, Q. Wang, J. Arbiol,* P.Y. Tang,* Emerging Metal Oxide/Nitride Protection Layers for Enhanced Stability of Silicon Photoelectrodes in Photoelectrochemical Catalysis: Recent Advancements and Challenges, Materials Today Chemistry, 2023, 34, 101795.

[9] Q. Wang,* X.F. Yang, Z. Jing, H. Liu, P.Y. Tang,* H.M. Zhu, B. Li,* Recent advances in one-dimensional alkali-metal hexatitanate photocatalysts towards environmental remediation and solar fuel production, Journal of Materials Science & Technology, 2024, 202, 201-239.

[10] H. Liu,† J.J. Li,† J. Arbiol,* B. Yang,* P.Y. Tang,* Catalytic Reactivity Descriptors of Metal-nitrogen-doped Carbon Catalysts for Electrocatalysis, EcoEnergy, 2023, 1, 154-185.


2. 离(原)位透射电子显微镜和相关谱学技术

基于球差矫正透射电子显微镜(Cs TEM)、高角环形暗场(HAADF)、几何相分析(GPA)、电子能量损失谱(EELS)、能量色散X射线谱(EDX)、三维原子模型构建及模拟等技术,关联了材料的化学成分、异质结、晶界、空位和单原子等表界面结构与电催化和太阳能电池性能,建立新能源光电功能材料原子结构和应用性能的构-效关系:

(1) 电催化材料微结构

图2. 基于球差矫正透射电子显微镜技术揭示(a) 晶界原子结构对二维MoS2电催化析氢反应的影响;(b) 化学成分和原子结构对CoFe普鲁士蓝电催化析氧反应的影响;(c) Se原子空位对二维PtSe2材料电催化析氢反应的影响。

[1] Y.M. He,†  P.Y. Tang, † Z.L. Hu,† Q.Y. He,† L.Q. Wang, Q.S. Zeng, P. Golani, G.H. Gao, C. Zhu, W. Fu, C.T. Gao, J. Xia, X.L. Wang, X.W. Wang, C. Zhu, Q.M. Ramasse, A. Zhang, J.R. Morante, L. Wang, B.K. Tay, B. Yakobson, A. Trampert, H. Zhang, M.H. Wu,* Q.J. Wang, J. Arbiol,* Z. Liu,* Engineering Grain Boundaries at the 2D Limit for the Hydrogen Evolution Reaction, Nature Communications , 2020, 11, 1.

[2] L.J. Han, P.Y. Tang, A. Reyes-Carmona, B. Rodriguez-Garcia, M. Torrens, J. R. Morante, J. Arbiol, J. R. Galan-Mascaros,* Enhanced activity and acid pH stability of prussian blue-type oxygen evolution electrocatalysts processed by chemical etching, Journal of the American Chemical Society, 2016, 138, 16037-16045.

[3] Y.M. He,†,* L.R. Liu, C. Zhu, S.S. Guo, P. Golani, B. Koo, P.Y. Tang, Z.Q. Zhao, M.Z. Xu, C. Zhu, P. Yu, X. Zhou, C.T. Gao, X.W. Wang, Z.D. Shi, L. Zheng, J.F. Yang, B. Shin, J. Arbiol, H.G. Duan, Y.H. Du, M. Heggen, R. E. Dunin-Borkowski, W.L. Guo, Q.J. Wang,* Z.H. Zhang,* Z. Liu ,* Amorphizing noble metal chalcogenide catalysts at the single-layer limit towards hydrogen production, Nature Catalysis2022, 5, 212-221.

[4] P.F. Cao,† P.Y. Tang,† M.F. Bekheet, H.C. Du, L.Y. Yang, L. Haug, A. Gili, B. Bischoff, A. Gurlo, M. Kunz, R. E. Dunin-Borkowski, S. Penner, M. Heggen*, Atomic-Scale Insights into Nickel Exsolution on LaNiO3 Catalysts via In Situ Electron Microscopy, J. Phys. Chem. C, 2022, 126, 1, 786-796.

[5] D.W. Yang,† Z.F. Liang,† P.Y. Tang,† C.Q. Zhang, M.X. Tang, Q.Z. Li, J.J. Biendicho, J.S. Li, M. Heggen, R.E. Dunin-Borkowski, M. Xu, J. Llorca, J. Arbiol,* J.R. Morante, S.L. Chou,* A. Cabot,* A High Conductivity One-Dimensional π-d Conjugated Metal-Organic Framework with Efficient Polysulfide Trapping-Diffusion-Catalysis in Lithium-Sulfur Batteries, Advanced Materials, 2022, 34, 2108835.

[6] Z.F. Liang,† D.W. Yang,† P.Y. Tang,† C.Q. Zhang, J.J. Biendicho, Y. Zhang, J. Llorca, X. Wang, J.S. Li, M. Heggen, J. David, R.E. Dunin-Borkowski, Y.T Zhou,* J.R. Morante, A. Cabot,* J. Arbiol*, Atomically dispersed Fe in C2N based Catalyst as Sulfur Host for Efficient Lithium-Sulfur Batteries, Advanced Energy Materials, 2021, 11, 2003507.

[7] Z.F. Liang, J.H. Wang,†, P.Y. Tang, W.Q. Tang, L.J. Liu, M. Shakouri, X. Wang, J. Llorca, S.L. Zhao, M. Heggen, R.E. Dunin-Borkowski, A. Cabot, H.B. Wu, J. Arbiol, Molecular Engineering to Introduce Carbonyl Between Nickel Salophen Active Sites to Enhance Electrochemical CO2 Reduction to Methanol, Applied Catalysis B: Environmental, 2022, 314, 121451.


(2) 有机无机杂化太阳能电池微结构

图4. (a)透射电子显微镜和(b)电子能量损失谱学研究有机-无机杂化钙钛矿材料中聚合物添加剂诱导的晶界缓解效应

[1] L.C. Zhao,† P.Y. Tang,† D.Y. Luo, M. Ibrahim Dar,* F.T. Eickemeyer, N. Arora, Q. Hu,* J.S. Luo, Y.H. Liu,* S.M. Zakeeruddin, A. Hagfeldt, J. Arbiol, W. Huang, Q.H. Gong, T.P. Russell, R.H. Friend, M. Grätzel,* R. Zhu*, Enabling Full-Scale Grain Boundary Mitigation in Polycrystalline Perovskite Solids, Science Advances, 2022, 8, eabo3733.

[2] Q.Y. Li, H. Liu, C.H. Hou, H.M. Yan, S.D. Li, P. Chen, H.Y. Xu, W.Y. Yu, Y.P. Zhao, Y.P. Sui, Q.X. Zhong, Y.Q. Ji, J.J. Shyue, S. Jia, B. Yang, P.Y. Tang, Q.H. Gong, L.C. Zhao*, R. Zhu*, Harmonizing the bilateral bond strength of the interfacial molecule in perovskite solar cells, Nature Energy, 2024, DOI: 10.1038/s41560-024-01642-3.

[3] P. Chen,† Y. Xiao,† J.T. Hu,† S.D. Li,† D.Y. Luo,* R. Su, P. Caprioglio, P. Kaienburg, X.H. Jia, N. Chen, J.J. Wu, Y.P. Sui, P.Y. Tang, H.M. Yan, T.Y. Huang, M.T. Yu, Q.Y. Li, L.C. Zhao, C.H. Hou, Y.W. You, J.J. Shyue, D.K. Wang, X.J. Li, Q. Zhao, Q.H. Gong,* Z.H. Lu,* H.J. Snaith*, R. Zhu*,  Multifunctional ytterbium oxide buffer for perovskite solar cells, Nature, 2024, 625, 516–522.

[4] H.B. Xie,† Z.W. Wang,† Z.H. Chen, M. Pols, K. Gałkowski, M. Anaya, S. Fu, X.Y. Jia, P.Y. Tang, D.J. Kubicki, A. Agarwalla, H.S. Kim, D. Prochowicz, X. Borrisé, C. Pereyra, M. Bonn, S. M. Zakeeruddin, L. Emsley, J. Arbiol, H. I. Wang, K.J. Tielrooij, S.D. Stranks, S.X. Tao, M. Grätzel, A. Hagfeldt,* M. Lira-Cantu,* Decoupling the effects of defects on efficiency and stability through phosphonates in stable halide perovskite solar cells, Joule, 2021, 5, 1246-1266.

[5]  Y.Q. Yang, G.D. Li,† L.C. Zhao,† P.J. Tan, Y. Li,* S.D. Li, L.N. Tan, C.Y. Deng, S.B. Wang, Z.Z. Zhao, C.J. Yuan, H.H. Ding, L. Chen, J.F. Zhu, Y. Guan, C.H. Hou, P.Y. Tang, Q.Y. Li, H. Liu, Y.G. Yang, A. Abate, J.J. Shyue, J.H. Wu,* T.P. Russell, Q. Hu*, A Catalyst-like System Enables Efficient Perovskite Solar Cells, Advanced Materials, 2024, 36, 2311145.