9297
当前位置: 首页   >  成果及论文
成果及论文

【2024年】


195.Sun, Y.; Ma, H.; Song, J.; Qiao, J.-W.; Han, B.; Wang, Q.; Jee, M. H.; Bu, L.; Wei, D.; Woo, H. Y.; Hao, X.-T., Binary all-polymer solar cells with 19.30% efficiency enabled by bromodibenzothiophene-based solid additive. Energy Environ. Sci. 2024.https://doi.org/10.1039/D4EE02978J


194.Pan, Y.; Guo, L.; Jee, M. H.; Dai, G.; Ge, Z.; Zhang, J.; Duan, X.; Song, J.; Li, X.; Woo, H. Y.; Sun, Y., Polymer Acceptor Copolymerized with Luminescent Unit for High-Performance All-Polymer Solar Cells with Low Non-radiative Energy Loss. Adv. Energy Mater. n/a, 2403747.https://doi.org/10.1002/aenm.202403747


193.Li, Y.; Ge, Z.; Mei, L.; Ma, H.; Chen, Y.; Wang, X.; Yu, J.; Lu, G.; Yang, R.; Chen, X.-K.; Yin, S.; Sun, Y., Isomeric Dimer Acceptors for Stable Organic Solar Cells with over 19% Efficiency. Angew. Chem. Int. Ed. n/a, e202411044.https://doi.org/10.1002/anie.202411044


192.Ge, Z.; Qiao, J.; Li, Y.; Song, J.; Duan, X.; Fu, Z.; Hu, H.; Yang, R.; Yin, H.; Hao, X.; Sun, Y., Regulating Electron-Phonon Coupling by Solid Additive for Efficient Organic Solar Cells. Angew. Chem. Int. Ed. n/a, e202413309.https://doi.org/10.1002/anie.202413309


191.Song, J.; Li, C.; Ma, H.; Han, B.; Wang, Q.; Wang, X.; Wei, D.; Bu, L.; Yang, R.; Yan, H.; Sun, Y., Optimizing Double-Fibril Network Morphology via Solid Additive Strategy Enables Binary All-Polymer Solar Cells with 19.50% Efficiency. Adv. Mater. 2024, n/a, 2406922.https://doi.org/10.1002/adma.202406922


190.Li, Y.; Mei, L.; Ge, Z.; Liu, C.; Song, J.; Man, Y.; Gao, J.; Zhang, J.; Tang, Z.; Chen, X.-K.; Sun, Y., Conjugation-Broken Dimer Acceptors Enable High-Efficiency, Stable, and Flexibility-Robust Organic Solar Cells. Adv. Mater. 2024, n/a, 2403890.https://doi.org/10.1002/adma.202403890


189.Sun, Y.; Liu, J.; Duan, X.; Song, J.; Liu, C.; Jee, M. H.; Woo, H. Y.; Gao, J.; Tang, Z., Quinoxaline-Benzothiadiazole Heterotrimer Enabling Organic Solar Cells with Extraordinary Efficiency and Stability. Energy Environ. Sci. 2024.https://doi.org/10.1039/D4EE00860J


188.Song, J.; Zhang, C.; Li, C.; Qiao, J.; Yu, J.; Gao, J.; Wang, X.; Hao, X.; Tang, Z.; Lu, G., Green‐SolventProcessed Organic Solar Cells with Approaching 20% Efficiency and Improved Photostability. Angew. Chem. Int. Ed. 2024, e202404297.https://doi.org/10.1002/anie.202404297


187.Ge, Z.; Qiao, J.; Song, J.; Li, X.; Fu, J.; Fu, Z.; Gao, J.; Tang, X.; Jiang, L.; Tang, Z., Suppressing Trap‐Assisted Nonradiative Recombination via Interface Modification for Achieving Efficient Organic Solar Cells. Adv. Energy Mater. 2024, 2400203.https://doi.org/10.1002/aenm.202400203


186.Duan, X.; Yang, Y.; Yu, J.; Liu, C.; Li, X.; Jee, M. H.; Gao, J.; Chen, L.; Tang, Z.; Woo, H. Y., Solid Additive Dual‐Regulates Spectral Response Enabling HighPerformance Semitransparent Organic Solar Cells. Adv. Mater. 2024, 2308750.https://doi.org/10.1002/adma.202308750


185.Li, X.; Chen, L.; Meng, L.; Zhang, C.; Duan, X.; Man, Y.; Jee, M. H.; Han, L.; Pan, Y.; Wei, D., Rational Design of Near‐Infrared Polymer Acceptors Using Steric Hindrance Strategy for HighPerformance Organic Solar Cells. Adv. Funct. Mater. 2024, 2316090.https://doi.org/10.1002/adfm.202316090


184.Zhang, C.; Song, J.; Ye, L.; Li, X.; Jee, M. H.; Woo, H. Y.; Sun, Y., Simple and Efficient Synthesis of Novel Tetramers with Enhanced Glass Transition Temperature for High-Performance and Stable Organic Solar Cells. Angew. Chem. Int. Ed. 2024, 63, e202316295.https://doi.org/10.1002/anie.202316295


【2023年】


183.Luo, S.; Li, C.; Zhang, J.; Zou, X.; Zhao, H.; Ding, K.; Huang, H.; Song, J.; Yi, J.; Yu, H.; Wong, K. S.; Zhang, G.; Ade, H.; Ma, W.; Hu, H.; Sun, Y.; Yan, H., Auxiliary sequential deposition enables 19%-efficiency organic solar cells processed from halogen-free solvents. Nat. Commun. 2023, 14, 6964.https://doi.org/10.1038/s41467-023-41978-0


182.Song, J.; Ye, L.; Liu, C.; Cai, Y.; Yue, G.; Li, Y.; Jee, M. H.; Zhang, C.; Zhao, Y.; Wei, D.; Woo, H. Y.; Sun, Y., Multifunctional Solid Additive Enabling All-Polymer Solar Cells with Improved Efficiency, Photostability and Mechanical Durability. Energy Environ. Sci. 2023.https://doi.org/10.1039/D3EE02953K


181.Zhang, C.; Song, J.; Xue, J.; Wang, S.; Ge, Z.; Man, Y.; Ma, W.; Sun, Y., Facile, versatile and stepwise synthesis of highperformance oligomer acceptors for stable organic solar cells. Angew. Chem., e202308595.https://doi.org/10.1002/ange.202308595


180.Li, Y.; Lu, G.; Ye, L.; Ryu, H. S.; Cai, Y.; Woo, H. Y.; Li, Y.; Sun, Y., Improvement of photovoltaic properties of benzo[1,2-b:4,5-b′]difuran-conjugated polymer by side-chain modification. ChemPhysMater 2023, 2, 225-230.https://doi.org/10.1016/j.chphma.2022.09.005


179.Duan, X.; Liu, C.; Cai, Y.; Ye, L.; Xue, J.; Yang, Y.; Ma, W.; Sun, Y., Longitudinal Through-Hole Architecture for Efficient and Thickness-Insensitive Semitransparent Organic Solar Cells. Adv. Mater. 2023, 35, 2302927.https://doi.org/10.1002/adma.202302927


178.Song, J.; Li, C.; Qiao, J.; Liu, C.; Cai, Y.; Li, Y.; Gao, J.; Jee, M. H.; Hao, X.; Woo, H. Y.; Tang, Z.; Yan, H.; Sun, Y., Over 18% efficiency ternary all-polymer solar cells with high photocurrent and fill factor. Matter 2023, 6, 1542-1554.https://doi.org/10.1016/j.matt.2023.03.001


177.Li, C.; Lu, G.; Sook Ryu, H.; Song, J.; Li, X.; Sun, X.; Young Woo, H.; Sun, Y., Cyclization of Inner Linear Alkyl Chains in Fused-Ring Electron Acceptors Toward Efficient Organic Solar Cells. Solar RRL 2023, 7, 2300067.https://doi.org/10.1002/solr.202300067


176.Ge, Z.; Qiao, J.; Li, Y.; Song, J.; Zhang, C.; Fu, Z.; Jee, M. H.; Hao, X.; Woo, H. Y.; Sun, Y., Over 18% Efficiency of All-Polymer Solar Cells with Long-Term Stability Enabled by Y6 as a Solid Additive. Adv. Mater. 2023, 35, 2301906.https://doi.org/10.1002/adma.202301906


175.Zhang, C.; Ge, Z.; Xue, J.; Ma, W.; Sun, Y., Layer-by-Layer Processed Efficient All-Polymer Solar Cells Based on a Nonfused Polymerized Small Molecule Acceptor. Macromol. Chem. Phys. 2023, 224, 2200395.https://doi.org/10.1002/macp.202200395


174.Cai, Y.; Xie, C.; Li, Q.; Liu, C.; Gao, J.; Jee, M. H.; Qiao, J.; Li, Y.; Song, J.; Hao, X.; Woo, H. Y.; Tang, Z.; Zhou, Y.; Zhang, C.; Huang, H.; Sun, Y., Improved Molecular Ordering in a Ternary Blend Enables All-Polymer Solar Cells over 18% Efficiency. Adv. Mater. 2023, 35, 2208165.https://doi.org/10.1002/adma.202208165


173.Li, D.; Deng, N.; Fu, Y.; Guo, C.; Zhou, B.; Wang, L.; Zhou, J.; Liu, D.; Li, W.; Wang, K.; Sun, Y.; Wang, T., Fibrillization of Non-Fullerene Acceptors Enables 19% Efficiency Pseudo-Bulk Heterojunction Organic Solar Cells. Adv. Mater. 2023, 35, 2208211.https://doi.org/10.1002/adma.202208211


172.Yang, Y.-N.; Li, X.-M.; Wang, S.-J.; Duan, X.-P.; Cai, Y.-H.; Sun, X.-B.; Wei, D.-H.; Ma, W.; Sun, Y.-M., An Organic Small Molecule as a Solid Additive in Non-Fullerene Organic Solar Cells with Improved Efficiency and Operational Stability. Chin. J. Polym. Sci. 2023, 41, 194-201.https://doi.org/10.1007/s10118-022-2860-8


171.Liu, C.; Liu, J.; Duan, X.; Sun, Y., Green-Processed Non-Fullerene Organic Solar Cells Based on Y-Series Acceptors. Adv. Sci. n/a, 2303842.https://doi.org/10.1002/advs.202303842


170.Ye, L.; Yang, Y.; Liu, C.; Duan, X.; Wang, S.; Li, W.; Sun, X.; Wang, T.; Ma, W.; Li, W.; Sun, Y., Directly Cross-Linked Conjugated Polymer Donor Enables Efficient Polymer Solar Cells with Extraordinary Mechanical Robustness. Small n/a, 2303226.https://doi.org/10.1002/smll.202303226


169.Wu, H.; Ma, Z.; Li, M.; Lu, H.; Tang, A.; Zhou, E.; Wen, J.; Sun, Y.; Tress, W.; Olsen, J. M. H.; Meloni, S.; Bo, Z.; Tang, Z., Impact of donor halogenation on reorganization energies and voltage losses in bulk-heterojunction solar cells. Energy Environ. Sci. 2023, 16, 1277-1290.https://doi.org/10.1039/D3EE00174A


168.Li, X.; Duan, X.; Qiao, J.; Li, S.; Cai, Y.; Zhang, J.; Zhang, Y.; Hao, X.; Sun, Y., Benzotriazole-Based Polymer Acceptor for High-Efficiency All-Polymer Solar Cells with High Photocurrent and Low Voltage Loss. Adv. Energy Mater. 2023, 13, 2203044.https://doi.org/10.1002/aenm.202203044


【2022年】

167.Huang, M.; Hu, T.; Han, G.; Li, C.; Zhu, L.; Zhou, J.; Xie, Z.; Sun, Y.; Yi, Y., Toward Quantifying the Relation between Exciton Binding Energies and Molecular Packing. J. Phys. Chem. Lett. 2022, 13, 11065-11070.https://doi.org/10.1021/acs.jpclett.2c03043


166.Song, J.; Li, Y.; Cai, Y.; Zhang, R.; Wang, S.; Xin, J.; Han, L.; Wei, D.; Ma, W.; Gao, F., Solid additive engineering enables high-efficiency and eco-friendly all-polymer solar cells. Matter 2022, 5, 4047-4059.https://doi.org/10.1016/j.matt.2022.08.011


165.Li, C.; Lu, G.; Ryu, H. S.; Sun, X.; Woo, H. Y.; Sun, Y., Effect of Terminal Electron-Withdrawing Group on the Photovoltaic Performance of Asymmetric Fused-Ring Electron Acceptors. ACS Appl. Mater. Interfaces 2022, 14, 43207-43214.https://doi.org/10.1021/acsami.2c10557


164.Zhou, J.; He, Z.; Sun, Y.; Tang, A.; Guo, Q.; Zhou, E., Organic Photovoltaic Cells Based on Nonhalogenated Polymer Donors and Nonhalogenated A-DA′D-A-Type Nonfullerene Acceptors with High VOC and Low Nonradiative Voltage Loss. ACS Appl. Mater. Interfaces 2022, 14, 41296-41303.https://doi.org/10.1021/acsami.2c10059


163.Liu, C.; Xiao, C.; Wang, J.; Liu, B.; Hao, Y.; Guo, J.; Song, J.; Tang, Z.; Sun, Y.; Li, W., Revisiting Conjugated Polymers with Long-Branched Alkyl Chains: High Molecular Weight, Excellent Mechanical Properties, and Low Voltage Losses. Macromolecules 2022, 55, 5964-5974.https://doi.org/10.1021/acs.macromol.2c00741


162.Zhu, L.; Zhang, M.; Xu, J.; Li, C.; Yan, J.; Zhou, G.; Zhong, W.; Hao, T.; Song, J.; Xue, X.; Zhou, Z.; Zeng, R.; Zhu, H.; Chen, C.-C.; MacKenzie, R. C. I.; Zou, Y.; Nelson, J.; Zhang, Y.; Sun, Y.; Liu, F., Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 2022, 21, 656-663.https://doi.org/10.1038/s41563-022-01244-y


161.Li, X.; Li, Y.; Zhang, Y.; Sun, Y., Recent Progress of Benzodifuran-Based Polymer Donors for High-Performance Organic Photovoltaics. Small Science 2022, 2, 2200006.https://doi.org/10.1002/smsc.202200006


160.Cai, Y.; Li, Q.; Lu, G.; Ryu, H. S.; Li, Y.; Jin, H.; Chen, Z.; Tang, Z.; Lu, G.; Hao, X.; Woo, H. Y.; Zhang, C.; Sun, Y., Vertically optimized phase separation with improved exciton diffusion enables efficient organic solar cells with thick active layers. Nat. Commun. 2022, 13, 2369.https://doi.org/10.1038/s41467-022-29803-6


159.Li, Y.; Song, J.; Dong, Y.; Jin, H.; Xin, J.; Wang, S.; Cai, Y.; Jiang, L.; Ma, W.; Tang, Z.; Sun, Y., Polymerized Small Molecular Acceptor with Branched Side Chains for All Polymer Solar Cells with Efficiency over 16.7%. Adv. Mater. 2022, 34, 2110155.https://doi.org/10.1002/adma.202110155


158.Li, X.; Duan, X.; Liang, Z.; Yan, L.; Yang, Y.; Qiao, J.; Hao, X.; Zhang, C.; Zhang, J.; Li, Y.; Huang, F.; Sun, Y., Benzo[1,2-b:4,5-b′]difuran Based Polymer Donor for High-Efficiency (>16%) and Stable Organic Solar Cells. Adv. Energy Mater. 2022, 12, 2103684.https://doi.org/10.1002/aenm.202103684


157.Zhang, X.; Li, C.; Xu, J.; Wang, R.; Song, J.; Zhang, H.; Li, Y.; Jing, Y.-N.; Li, S.; Wu, G.; Zhou, J.; Li, X.; Zhang, Y.; Li, X.; Zhang, J.; Zhang, C.; Zhou, H.; Sun, Y.; Zhang, Y., High fill factor organic solar cells with increased dielectric constant and molecular packing density. Joule 2022, 6, 444-457.https://doi.org/10.1016/j.joule.2022.01.006


156.Li, D.; Guo, C.; Zhang, X.; Du, B.; Yu, C.; Wang, P.; Cheng, S.; Wang, L.; Cai, J.; Wang, H.; Liu, D.; Yao, H.; Sun, Y.; Hou, J.; Wang, T., Non-fullerene acceptor pre-aggregates enable high efficiency pseudo-bulk heterojunction organic solar cells. Sci. China Chem. 2022, 65, 373-381.https://doi.org/10.1007/s11426-021-1128-1


155.Li, Y.; Li, Q.; Cai, Y.; Jin, H.; Zhang, J.; Tang, Z.; Zhang, C.; Wei, Z.; Sun, Y., An efficient polymer acceptor via a random polymerization strategy enables all-polymer solar cells with efficiency exceeding 17%. Energy Environ. Sci. 2022, 15, 3854-3861.https://doi.org/10.1039/D2EE00972B


154.Duan, X.; Song, W.; Qiao, J.; Li, X.; Cai, Y.; Wu, H.; Zhang, J.; Hao, X.; Tang, Z.; Ge, Z.; Huang, F.; Sun, Y., Ternary strategy enabling high-efficiency rigid and flexible organic solar cells with reduced non-radiative voltage loss. Energy Environ. Sci. 2022, 15, 1563-1572.DOI     https://doi.org/10.1039/D1EE03989J


【2021年】


153.Xie, Y.; Ryu, H. S.; Han, L.; Cai, Y.; Duan, X.; Wei, D.; Woo, H. Y.; Sun, Y., High-efficiency organic solar cells enabled by an alcohol-washable solid additive. Sci. China Chem. 2021, 64, 2161-2168.https://doi.org/10.1007/s11426-021-1121-y


152.Man, Y.; Ye, L.; Cai, Y.; Sun, X.; Sun, Y., Benzyl side-chain engineering of non-fullerene acceptors for efficient organic solar cells. Dyes Pigm. 2021, 195, 109706.https://doi.org/10.1016/j.dyepig.2021.109706


151.Xie, Y.; Ye, L.; Cai, Y.; Zhang, X.; Xu, J.; Wang, T.; Liu, F.; Sun, Y., Fine-Tuning Aggregation of Nonfullerene Acceptor Enables High-Efficiency Organic Solar Cells. Small Structures 2021, 2, 2100055.https://doi.org/10.1002/sstr.202100055


150.Cai, Y.; Li, Y.; Wang, R.; Wu, H.; Chen, Z.; Zhang, J.; Ma, Z.; Hao, X.; Zhao, Y.; Zhang, C.; Huang, F.; Sun, Y., A Well-Mixed Phase Formed by Two Compatible Non-Fullerene Acceptors Enables Ternary Organic Solar Cells with Efficiency over 18.6%. Adv. Mater. 2021, 33, 2101733.https://doi.org/10.1002/adma.202101733


149.Chen, X.-K.; Qian, D.; Wang, Y.; Kirchartz, T.; Tress, W.; Yao, H.; Yuan, J.; Hülsbeck, M.; Zhang, M.; Zou, Y.; Sun, Y.; Li, Y.; Hou, J.; Inganäs, O.; Coropceanu, V.; Bredas, J.-L.; Gao, F., A unified description of non-radiative voltage losses in organic solar cells. Nat. Energy 2021, 6, 799-806.https://doi.org/10.1038/s41560-021-00843-4


148.Song, J.; Zhu, L.; Li, C.; Xu, J.; Wu, H.; Zhang, X.; Zhang, Y.; Tang, Z.; Liu, F.; Sun, Y., High-efficiency organic solar cells with low voltage loss induced by solvent additive strategy. Matter 2021, 4, 2542-2552.https://doi.org/10.1016/j.matt.2021.06.010


147.Li, C.; Zhou, J.; Song, J.; Xu, J.; Zhang, H.; Zhang, X.; Guo, J.; Zhu, L.; Wei, D.; Han, G.; Min, J.; Zhang, Y.; Xie, Z.; Yi, Y.; Yan, H.; Gao, F.; Liu, F.; Sun, Y., Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 2021, 6, 605-613.https://doi.org/10.1038/s41560-021-00820-x


146.Li, Y.; Cai, Y.; Xie, Y.; Song, J.; Wu, H.; Tang, Z.; Zhang, J.; Huang, F.; Sun, Y., A facile strategy for third-component selection in non-fullerene acceptor-based ternary organic solar cells. Energy Environ. Sci. 2021, 14, 5009-5016.https://doi.org/10.1039/D1EE01864G


145.Ge, G.-Y.; Xiong, W.; Liu, K.-K.; Ryu, H. S.; Wan, S.-S.; Liu, B.; Mahmood, A.; Bai, H.-R.; Wang, J.-F.; Wang, Z.; Woo, H. Y.; Sun, Y.; Wang, J.-L., Synergistic effect of the selenophene-containing central core and the regioisomeric monochlorinated terminals on the molecular packing, crystallinity, film morphology, and photovoltaic performance of selenophene-based nonfullerene acceptors. J. Mater. Chem. C 2021, 9, 1923-1935.https://doi.org/10.1039/D0TC05261B


【2020年】


144.An, N.; Cai, Y.; Wu, H.; Tang, A.; Zhang, K.; Hao, X.; Ma, Z.; Guo, Q.; Ryu, H. S.; Woo, H. Y.; Sun, Y.; Zhou, E., Solution-Processed Organic Solar Cells with High Open-Circuit Voltage of 1.3 V and Low Non-Radiative Voltage Loss of 0.16 V. Adv. Mater. 2020, 32, 2002122.https://doi.org/10.1002/adma.202002122


143.Weng, K.; Ye, L.; Li, C.; Shen, Z.; Xu, J.; Feng, X.; Xia, T.; Tan, S.; Lu, G.; Liu, F.; Sun, Y., High-Efficiency Organic Solar Cells with Wide Toleration of Active Layer Thickness. Solar RRL 2020, 4, 2000476.https://doi.org/10.1002/solr.202000476


142.Xia, T.; Li, C.; Ryu, H. S.; Guo, J.; Min, J.; Woo, H. Y.; Sun, Y., Efficient Fused-Ring Extension of A–D–A-Type Non-Fullerene Acceptors by a Symmetric Replicating Core Unit Strategy. Chem. Eur. J. 2020, 26, 12411-12417.https://doi.org/10.1002/chem.202000889


141.Ye, L.; Weng, K.; Xu, J.; Du, X.; Chandrabose, S.; Chen, K.; Zhou, J.; Han, G.; Tan, S.; Xie, Z.; Yi, Y.; Li, N.; Liu, F.; Hodgkiss, J. M.; Brabec, C. J.; Sun, Y., Unraveling the influence of non-fullerene acceptor molecular packing on photovoltaic performance of organic solar cells. Nat. Commun. 2020, 11, 6005.https://doi.org/10.1038/s41467-020-19853-z



140.Zhang, M.; Zeng, M.; Ye, L.; Tan, S.; Zhao, B.; Ryu, H. S.; Woo, H. Y.; Sun, Y., Effects of monohalogenated terminal units of non-fullerene acceptors on molecular aggregation and photovoltaic performance. Sol Energy 2020, 208, 866-872.https://doi.org/10.1016/j.solener.2020.07.100


139.Cai, Y.; Zhang, H.; Ye, L.; Zhang, R.; Xu, J.; Zhang, K.; Bi, P.; Li, T.; Weng, K.; Xu, K.; Xia, J.; Bao, Q.; Liu, F.; Hao, X.; Tan, S.; Gao, F.; Zhan, X.; Sun, Y., Effect of the Energy Offset on the Charge Dynamics in Nonfullerene Organic Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 43984-43991.https://doi.org/10.1021/acsami.0c13085


138.Song, J.; Ye, L.; Li, C.; Xu, J.; Chandrabose, S.; Weng, K.; Cai, Y.; Xie, Y.; O'Reilly, P.; Chen, K.; Zhou, J.; Zhou, Y.; Hodgkiss, J. M.; Liu, F.; Sun, Y., An Optimized Fibril Network Morphology Enables High-Efficiency and Ambient-Stable Polymer Solar Cells. Adv. Sci. 2020, 7, 2001986.https://doi.org/10.1002/advs.202001986


137.Zhang, B.; An, N.; Wu, H.; Geng, Y.; Sun, Y.; Ma, Z.; Li, W.; Guo, Q.; Zhou, E., The first application of isoindigo-based polymers in non-fullerene organic solar cells. Sci. China Chem. 2020, 63, 1262-1271.https://doi.org/10.1007/s11426-020-9777-1


136.Xie, Y.; Cai, Y.; Zhu, L.; Xia, R.; Ye, L.; Feng, X.; Yip, H.-L.; Liu, F.; Lu, G.; Tan, S.; Sun, Y., Fibril Network Strategy Enables High-Performance Semitransparent Organic Solar Cells. Adv. Funct. Mater. 2020, 30, 2002181.https://doi.org/10.1002/adfm.202002181


135.Feng, J.; Fu, H.; Jiang, W.; Zhang, A.; Ryu, H. S.; Woo, H. Y.; Sun, Y.; Wang, Z., Fuller-Rylenes: Paving the Way for Promising Acceptors. ACS Appl. Mater. Interfaces 2020, 12, 29513-29519.https://doi.org/10.1021/acsami.0c05548


134.Weng, K.; Ye, L.; Zhu, L.; Xu, J.; Zhou, J.; Feng, X.; Lu, G.; Tan, S.; Liu, F.; Sun, Y., Optimized active layer morphology toward efficient and polymer batch insensitive organic solar cells. Nat. Commun. 2020, 11, 2855.https://doi.org/10.1038/s41467-020-16621-x


133.Xia, T.; Li, C.; Ryu, H. S.; Sun, X.; Woo, H. Y.; Sun, Y., Asymmetrically Alkyl-Substituted Wide-Bandgap Nonfullerene Acceptor for Organic Solar Cells. Solar RRL 2020, 4, 2000061.https://doi.org/10.1002/solr.202000061


132.Xia, T.; Li, C.; Ryu, H. S.; Sun, X.; Woo, H. Y.; Sun, Y., Effect of Extended π-Conjugation of Central Cores on Photovoltaic Properties of Asymmetric Wide-Bandgap Nonfullerene Acceptors. Org. Mater. 2020, 2, 173-181.10.1055/s-0040-1709999


131.Ye, L.; Li, X.; Cai, Y.; Ryu, H. S.; Lu, G.; Wei, D.; Sun, X.; Woo, H. Y.; Tan, S.; Sun, Y., Organic solar cells based on chlorine functionalized benzo[1,2-b:4,5-b′]difuran-benzo[1,2-c:4,5-c]dithiophene-4,8-dione copolymer with efficiency exceeding 13%. Sci. China Chem. 2020, 63, 483-489.https://doi.org/10.1007/s11426-019-9684-8


130.Li, X.; Weng, K.; Ryu, H. S.; Guo, J.; Zhang, X.; Xia, T.; Fu, H.; Wei, D.; Min, J.; Zhang, Y.; Woo, H. Y.; Sun, Y., Non-Fullerene Organic Solar Cells Based on Benzo[1,2-b:4,5-b′]difuran-Conjugated Polymer with 14% Efficiency. Adv. Funct. Mater. 2020, 30, 1906809.https://doi.org/10.1002/adfm.201906809


129.Ye, L.; Cai, Y.; Li, C.; Zhu, L.; Xu, J.; Weng, K.; Zhang, K.; Huang, M.; Zeng, M.; Li, T.; Zhou, E.; Tan, S.; Hao, X.; Yi, Y.; Liu, F.; Wang, Z.; Zhan, X.; Sun, Y., Ferrocene as a highly volatile solid additive in non-fullerene organic solar cells with enhanced photovoltaic performance. Energy Environ. Sci. 2020, 13, 5117-5125.https://doi.org/10.1039/D0EE02426K


128.Zhou, Z.; Duan, J.; Ye, L.; Wang, G.; Zhao, B.; Tan, S.; Shen, P.; Ryu, H. S.; Woo, H. Y.; Sun, Y., Simultaneously improving the photovoltaic parameters of organic solar cells via isomerization of benzo[b]benzo[4,5]thieno[2,3-d]thiophene-based octacyclic non-fullerene acceptors. J. Mater. Chem. A 2020, 8, 9684-9692.https://doi.org/10.1039/D0TA00451K


127.Li, C.; Song, J.; Cai, Y.; Han, G.; Zheng, W.; Yi, Y.; Ryu, H. S.; Woo, H. Y.; Sun, Y., Heteroatom substitution-induced asymmetric A–D–A type non-fullerene acceptor for efficient organic solar cells. Journal of Energy Chemistry 2020, 40, 144-150.https://doi.org/10.1016/j.jechem.2019.03.009


【2019年】


126.Song, J.; Li, C.; Zhu, L.; Guo, J.; Xu, J.; Zhang, X.; Weng, K.; Zhang, K.; Min, J.; Hao, X.; Zhang, Y.; Liu, F.; Sun, Y., Ternary Organic Solar Cells with Efficiency >16.5% Based on Two Compatible Nonfullerene Acceptors. Adv. Mater. 2019, 31, 1905645.https://doi.org/10.1002/adma.201905645


125.Xie, Y.; Xia, R.; Li, T.; Ye, L.; Zhan, X.; Yip, H.-L.; Sun, Y., Highly Transparent Organic Solar Cells with All-Near-Infrared Photoactive Materials. Small Methods 2019, 3, 1900424.https://doi.org/10.1002/smtd.201900424


124.An, N.; Ran, H.; Geng, Y.; Zeng, Q.; Hu, J.; Yang, J.; Sun, Y.; Wang, X.; Zhou, E., Exploring a Fused 2-(Thiophen-2-yl)thieno[3,2-b]thiophene (T-TT) Building Block to Construct n-Type Polymer for High-Performance All-Polymer Solar Cells. ACS Appl. Mater. Interfaces 2019, 11, 42412-42419.https://doi.org/10.1021/acsami.9b12814


123.Meng, X.; Zhang, L.; Xie, Y.; Hu, X.; Xing, Z.; Huang, Z.; Liu, C.; Tan, L.; Zhou, W.; Sun, Y.; Ma, W.; Chen, Y., A General Approach for Lab-to-Manufacturing Translation on Flexible Organic Solar Cells. Adv. Mater. 2019, 31, 1903649.https://doi.org/10.1002/adma.201903649


122.Li, C.; Fu, H.; Xia, T.; Sun, Y., Asymmetric Nonfullerene Small Molecule Acceptors for Organic Solar Cells. Adv. Energy Mater. 2019, 9, 1900999.https://doi.org/10.1002/aenm.201900999


121.Xia, T.; Cai, Y.; Fu, H.; Sun, Y., Optimal bulk-heterojunction morphology enabled by fibril network strategy for high-performance organic solar cells. Sci. China Chem. 2019, 62, 662-668.https://doi.org/10.1007/s11426-019-9478-2


120.Xie, Y.; Li, T.; Guo, J.; Bi, P.; Xue, X.; Ryu, H. S.; Cai, Y.; Min, J.; Huo, L.; Hao, X.; Woo, H. Y.; Zhan, X.; Sun, Y., Ternary Organic Solar Cells with Small Nonradiative Recombination Loss. ACS Energy Letters 2019, 4, 1196-1203.https://doi.org/10.1021/acsenergylett.9b00681


119.Ye, L.; Xie, Y.; Weng, K.; Ryu, H. S.; Li, C.; Cai, Y.; Fu, H.; Wei, D.; Woo, H. Y.; Tan, S.; Sun, Y., Insertion of chlorine atoms onto π-bridges of conjugated polymer enables improved photovoltaic performance. Nano Energy 2019, 58, 220-226.https://doi.org/10.1016/j.nanoen.2019.01.039


118.Fu, H.; Wang, Z.; Sun, Y., Polymer Donors for High-Performance Non-Fullerene Organic Solar Cells. Angew. Chem. Int. Ed. 2019, 58, 4442-4453.https://doi.org/10.1002/anie.201806291


117.Luo, Z.; Liu, T.; Chen, Z.; Xiao, Y.; Zhang, G.; Huo, L.; Zhong, C.; Lu, X.; Yan, H.; Sun, Y.; Yang, C., Isomerization of Perylene Diimide Based Acceptors Enabling High-Performance Nonfullerene Organic Solar Cells with Excellent Fill Factor. Adv. Sci. 2019, 6, 1802065.https://doi.org/10.1002/advs.201802065


116.Liao, Z.; Xie, Y.; Chen, L.; Tan, Y.; Huang, S.; An, Y.; Ryu, H. S.; Meng, X.; Liao, X.; Huang, B.; Xie, Q.; Woo, H. Y.; Sun, Y.; Chen, Y., Fluorobenzotriazole (FTAZ)-Based Polymer Donor Enables Organic Solar Cells Exceeding 12% Efficiency. Adv. Funct. Mater. 2019, 29, 1808828.https://doi.org/10.1002/adfm.201808828


115.Li, X.; Li, C.; Ye, L.; Weng, K.; Fu, H.; Ryu, H. S.; Wei, D.; Sun, X.; Woo, H. Y.; Sun, Y., Asymmetric A–D–π–A-type nonfullerene small molecule acceptors for efficient organic solar cells. J. Mater. Chem. A 2019, 7, 19348-19354.https://doi.org/10.1039/C9TA06476A


114.Chen, Y.; Geng, Y.; Tang, A.; Wang, X.; Sun, Y.; Zhou, E., Changing the π-bridge from thiophene to thieno[3,2-b]thiophene for the D–π–A type polymer enables high performance fullerene-free organic solar cells. Chem. Commun. 2019, 55, 6708-6710.https://doi.org/10.1039/C9CC02904D


113.Ye, L.; Xie, Y.; Xiao, Y.; Song, J.; Li, C.; Fu, H.; Weng, K.; Lu, X.; Tan, S.; Sun, Y., Asymmetric fused-ring electron acceptor with two distinct terminal groups for efficient organic solar cells. J. Mater. Chem. A 2019, 7, 8055-8060.https://doi.org/10.1039/C9TA01285K


112.Weng, K.; Li, C.; Bi, P.; Ryu, H. S.; Guo, Y.; Hao, X.; Zhao, D.; Li, W.; Woo, H. Y.; Sun, Y., Ternary organic solar cells based on two compatible PDI-based acceptors with an enhanced power conversion efficiency. J. Mater. Chem. A 2019, 7, 3552-3557.https://doi.org/10.1039/C8TA12034J


111.Li, C.; Xia, T.; Song, J.; Fu, H.; Ryu, H. S.; Weng, K.; Ye, L.; Woo, H. Y.; Sun, Y., Asymmetric selenophene-based non-fullerene acceptors for high-performance organic solar cells. J. Mater. Chem. A 2019, 7, 1435-1441.https://doi.org/10.1039/C8TA11197A


110.Fu, H.; Li, C.; Bi, P.; Hao, X.; Liu, F.; Li, Y.; Wang, Z.; Sun, Y., Efficient Ternary Organic Solar Cells Enabled by the Integration of Nonfullerene and Fullerene Acceptors with a Broad Composition Tolerance. Adv. Funct. Mater. 2019, 29, 1807006.https://doi.org/10.1002/adfm.201807006


109.Xue, X.; Weng, K.; Qi, F.; Zhang, Y.; Wang, Z.; Ali, J.; Wei, D.; Sun, Y.; Liu, F.; Wan, M.; Liu, J.; Huo, L., Steric Engineering of Alkylthiolation Side Chains to Finely Tune Miscibility in Nonfullerene Polymer Solar Cells. Adv. Energy Mater. 2019, 9, 1802686.https://doi.org/10.1002/aenm.201802686


108.Li, C.; Song, J.; Ye, L.; Koh, C.; Weng, K.; Fu, H.; Cai, Y.; Xie, Y.; Wei, D.; Woo, H. Y.; Sun, Y., High-Performance Eight-Membered Indacenodithiophene-Based Asymmetric A-D-A Type Non-Fullerene Acceptors. Solar RRL 2019, 3, 1800246.https://doi.org/10.1002/solr.201800246


【2018年】


107.Xie, Y.; Huo, L.; Fan, B.; Fu, H.; Cai, Y.; Zhang, L.; Li, Z.; Wang, Y.; Ma, W.; Chen, Y.; Sun, Y., High-Performance Semitransparent Ternary Organic Solar Cells. Adv. Funct. Mater. 2018, 28, 1800627.https://doi.org/10.1002/adfm.201800627


106.Yin, Y.; Song, J.; Guo, F.; Sun, Y.; Zhao, L.; Zhang, Y., Asymmetrical vs Symmetrical Selenophene-Annulated Fused Perylenediimide Acceptors for Efficient Non-Fullerene Polymer Solar Cells. ACS Appl. Energy Mater. 2018, 1, 6577-6585.https://doi.org/10.1021/acsaem.8b01484


105.Fu, H.; Wang, Y.; Meng, D.; Ma, Z.; Li, Y.; Gao, F.; Wang, Z.; Sun, Y., Suppression of Recombination Energy Losses by Decreasing the Energetic Offsets in Perylene Diimide-Based Nonfullerene Organic Solar Cells. ACS Energy Letters 2018, 3, 2729-2735.https://doi.org/10.1021/acsenergylett.8b01665


104.Xie, Y.; Yang, F.; Li, Y.; Uddin, M. A.; Bi, P.; Fan, B.; Cai, Y.; Hao, X.; Woo, H. Y.; Li, W.; Liu, F.; Sun, Y., Morphology Control Enables Efficient Ternary Organic Solar Cells. Adv. Mater. 2018, 30, 1803045.https://doi.org/10.1002/adma.201803045


103.Xiong, W.; Qi, F.; Liu, T.; Huo, L.; Xue, X.; Bi, Z.; Zhang, Y.; Ma, W.; Wan, M.; Liu, J.; Sun, Y., Controlling Molecular Weight to Achieve High-Efficient Polymer Solar Cells With Unprecedented Fill Factor of 79% Based on Non-Fullerene Small Molecule Acceptor. Solar RRL 2018, 2, 1800129.https://doi.org/10.1002/solr.201800129


102.Weng, K.; Xue, X.; Qi, F.; Zhang, Y.; Huo, L.; Zhang, J.; Wei, D.; Wan, M.; Sun, Y., Synergistic Effects of Fluorination and Alkylthiolation on the Photovoltaic Performance of the Poly(benzodithiophene-benzothiadiazole) Copolymers. ACS Appl. Energy Mater. 2018, 1, 4686-4694.https://doi.org/10.1021/acsaem.8b00819


101.Qi, F.; Song, J.; Xiong, W.; Huo, L.; Sun, X.; Sun, Y., Two wide-bandgap fluorine-substituted benzotriazole based terpolymers for efficient polymer solar cells. Dyes Pigm. 2018, 155, 126-134.https://doi.org/10.1016/j.dyepig.2018.03.013


100.Hoogenboom, R.; Sun, Y.; Xu, T., The Future of Polymer Science. Macromol. Rapid Commun 2018, 39, 1800458.10.1002/marc.201800458


99.Gao, Y.; An, C.; Wang, Z.; Sun, Y.; Wei, Z.; Guo, F.; Yang, Y.; Zhao, L.; Zhang, Y., Efficient post-treatment-free polymer solar cells from indacenodithiophene and fluorinated quinoxaline-based conjugated polymers. Dyes Pigm. 2018, 154, 164-171.https://doi.org/10.1016/j.dyepig.2018.02.050


98.Cai, Y.; Chang, L.; You, L.; Fan, B.; Liu, H.; Sun, Y., Novel Nonconjugated Polymer as Cathode Buffer Layer for Efficient Organic Solar Cells. ACS Appl. Mater. Interfaces 2018, 10, 24082-24089.https://doi.org/10.1021/acsami.8b07691


97.Liu, T.; Huo, L.; Chandrabose, S.; Chen, K.; Han, G.; Qi, F.; Meng, X.; Xie, D.; Ma, W.; Yi, Y.; Hodgkiss, J. M.; Liu, F.; Wang, J.; Yang, C.; Sun, Y., Optimized Fibril Network Morphology by Precise Side-Chain Engineering to Achieve High-Performance Bulk-Heterojunction Organic Solar Cells. Adv. Mater. 2018, 30, 1707353.https://doi.org/10.1002/adma.201707353


96.Huo, L.; Xue, X.; Liu, T.; Xiong, W.; Qi, F.; Fan, B.; Xie, D.; Liu, F.; Yang, C.; Sun, Y., Subtle Side-Chain Engineering of Random Terpolymers for High-Performance Organic Solar Cells. Chem. Mater. 2018, 30, 3294-3300.https://doi.org/10.1021/acs.chemmater.8b00510


95.Ma, Z.; Fu, H.; Meng, D.; Jiang, W.; Sun, Y.; Wang, Z., Isomeric N-Annulated Perylene Diimide Dimers for Organic Solar Cells. Chem. - Asian J. 2018, 13, 918-923.https://doi.org/10.1002/asia.201800058


94.Luo, Z.; Bin, H.; Liu, T.; Zhang, Z.-G.; Yang, Y.; Zhong, C.; Qiu, B.; Li, G.; Gao, W.; Xie, D.; Wu, K.; Sun, Y.; Liu, F.; Li, Y.; Yang, C., Fine-Tuning of Molecular Packing and Energy Level through Methyl Substitution Enabling Excellent Small Molecule Acceptors for Nonfullerene Polymer Solar Cells with Efficiency up to 12.54%. Adv. Mater. 2018, 30, 1706124.https://doi.org/10.1002/adma.201706124


93.Song, J.; Zhang, M.; Yuan, M.; Qian, Y.; Sun, Y.; Liu, F., Morphology Characterization of Bulk Heterojunction Solar Cells. Small Methods 2018, 2, 1700229.https://doi.org/10.1002/smtd.201700229


92.Xiong, W.-t.; Guo, Y.-k.; Zhao, D.-h.; Sun, Y.-m., High-performance all polymer solar cells fabricated with non-halogenated solvent. ACTA POLYMERICA SINICA 2018, 315-320.10.11777/j.issn1000-3304.2018.17267


91.Cai, Y.; Xue, X.; Han, G.; Bi, Z.; Fan, B.; Liu, T.; Xie, D.; Huo, L.; Ma, W.; Yi, Y.; Yang, C.; Sun, Y., Novel π-Conjugated Polymer Based on an Extended Thienoquinoid. Chem. Mater. 2018, 30, 319-323.https://doi.org/10.1021/acs.chemmater.7b04592


90.Payne, A.-J.; Song, J.; Sun, Y.; Welch, G. C., A tetrameric perylene diimide non-fullerene acceptor via unprecedented direct (hetero)arylation cross-coupling reactions. Chem. Commun. 2018, 54, 11443-11446.https://doi.org/10.1039/C8CC06446F


89.Song, J.; Li, C.; Ye, L.; Koh, C.; Cai, Y.; Wei, D.; Woo, H. Y.; Sun, Y., Extension of indacenodithiophene backbone conjugation enables efficient asymmetric A–D–A type non-fullerene acceptors. J. Mater. Chem. A 2018, 6, 18847-18852.https://doi.org/10.1039/C8TA07334A


88.Song, J.; Xue, X.; Fan, B.; Huo, L.; Sun, Y., A novel bifunctional A–D–A type small molecule for efficient organic solar cells. Mater. Chem. Front. 2018, 2, 1626-1630.https://doi.org/10.1039/C8QM00223A


87.Li, C.; Xie, Y.; Fan, B.; Han, G.; Yi, Y.; Sun, Y., A nonfullerene acceptor utilizing a novel asymmetric multifused-ring core unit for highly efficient organic solar cells. J. Mater. Chem. C 2018, 6, 4873-4877.https://doi.org/10.1039/C8TC01229F


86.Luo, Z.; Liu, T.; Cheng, W.; Wu, K.; Xie, D.; Huo, L.; Sun, Y.; Yang, C., A three-dimensional thiophene-annulated perylene bisimide as a fullerene-free acceptor for a high performance polymer solar cell with the highest PCE of 8.28% and a VOC over 1.0 V. J. Mater. Chem. C 2018, 6, 1136-1142.https://doi.org/10.1039/C7TC05261H


85.Fu, H.; Wang, Z.; Sun, Y., Advances in Non-Fullerene Acceptor Based Ternary Organic Solar Cells. Solar RRL 2018, 2, 1700158.https://doi.org/10.1002/solr.201700158


84.Xie, D.; Liu, T.; Lee, T. H.; Gao, W.; Zhong, C.; Huo, L.; Luo, Z.; Wu, K.; Xiong, W.; Kim, J. Y.; Choi, H.; Sun, Y.; Yang, C., A new small molecule acceptor based on indaceno[2,1-b:6,5-b’]dithiophene and thiophene-fused ending group for fullerene-free organic solar cells. Dyes Pigm. 2018, 148, 263-269.https://doi.org/10.1016/j.dyepig.2017.09.009


83.Li, Z.; Weng, K.; Chen, A.; Sun, X.; Wei, D.; Yu, M.; Huo, L.; Sun, Y., Benzothiadiazole Versus Thiophene: Influence of the Auxiliary Acceptor on the Photovoltaic Properties of Donor–Acceptor-Based Copolymers. Macromol. Rapid Commun. 2018, 39, 1700547.https://doi.org/10.1002/marc.201700547


【2017年】


82.Zhu, C.; Zhao, Z.; Chen, H.; Zheng, L.; Li, X.; Chen, J.; Sun, Y.; Liu, F.; Guo, Y.; Liu, Y., Regioregular Bis-Pyridal[2,1,3]thiadiazole-Based Semiconducting Polymer for High-Performance Ambipolar Transistors. J. Am. Chem. Soc. 2017, 139, 17735-17738.https://doi.org/10.1021/jacs.7b10256


81.Chang, Z.-F.; Cai, Y.; Liu, K.-K.; Song, X.-X.; Liu, J.-J.; Liu, X.; Sun, Y.; Zhang, R. b.; Wang, J.-L., Rational design of two-dimensional PDI-based small molecular acceptor from extended indacenodithiazole core for organic solar cells. Dyes Pigm. 2017, 147, 31-39.https://doi.org/10.1016/j.dyepig.2017.07.060


80.Xiong, W.; Meng, X.; Liu, T.; Cai, Y.; Xue, X.; Li, Z.; Sun, X.; Huo, L.; Ma, W.; Sun, Y., Rational design of perylenediimide-based polymer acceptor for efficient all-polymer solar cells. Org. Electron. 2017, 50, 376-383.https://doi.org/10.1016/j.orgel.2017.08.005


79.Zhan, X.; Xiong, W.; Gong, Y.; Liu, T.; Xie, Y.; Peng, Q.; Sun, Y.; Li, Z., Pyrene-Fused Perylene Diimides: New Building Blocks to Construct Non-Fullerene Acceptors With Extremely High Open-Circuit Voltages up to 1.26 V. Solar RRL 2017, 1, 1700123.https://doi.org/10.1002/solr.201700123


78.Gao, H.; Feng, J.; Zhang, B.; Xiao, C.; Wu, Y.; Kan, X.; Su, B.; Wang, Z.; Hu, W.; Sun, Y.; Jiang, L.; Heeger, A. J., Capillary-Bridge Mediated Assembly of Conjugated Polymer Arrays toward Organic Photodetectors. Adv. Funct. Mater. 2017, 27, 1701347.https://doi.org/10.1002/adfm.201701347


77.Meng, D.; Fu, H.; Fan, B.; Zhang, J.; Li, Y.; Sun, Y.; Wang, Z., Rigid Nonfullerene Acceptors Based on Triptycene–Perylene Dye for Organic Solar Cells. Chem. - Asian J. 2017, 12, 1286-1290.https://doi.org/10.1002/asia.201700440


76.Xie, D.; Liu, T.; Gao, W.; Zhong, C.; Huo, L.; Luo, Z.; Wu, K.; Xiong, W.; Liu, F.; Sun, Y.; Yang, C., A Novel Thiophene-Fused Ending Group Enabling an Excellent Small Molecule Acceptor for High-Performance Fullerene-Free Polymer Solar Cells with 11.8% Efficiency. Solar RRL 2017, 1, 1700044.https://doi.org/10.1002/solr.201700044


75.Cai, Y.; Huo, L.; Sun, Y., Recent Advances in Wide-Bandgap Photovoltaic Polymers. Adv. Mater. 2017, 29, 1605437.https://doi.org/10.1002/adma.201605437


74.You, L.; Liu, B.; Liu, T.; Fan, B.; Cai, Y.; Guo, L.; Sun, Y., Organic Solar Cells Based on WO2.72 Nanowire Anode Buffer Layer with Enhanced Power Conversion Efficiency and Ambient Stability. ACS Appl. Mater. Interfaces 2017, 9, 12629-12636.https://doi.org/10.1021/acsami.6b15762


73.Liu, T.; Xue, X.; Huo, L.; Sun, X.; An, Q.; Zhang, F.; Russell, T. P.; Liu, F.; Sun, Y., Highly Efficient Parallel-Like Ternary Organic Solar Cells. Chem. Mater. 2017, 29, 2914-2920.https://doi.org/10.1021/acs.chemmater.6b05194


72.Xue, X.; Liu, T.; Meng, X.; Sun, X.; Huo, L.; Ma, W.; Sun, Y., Enhanced open-circuit voltage in methoxyl substituted benzodithiophene-based polymer solar cells. Sci. China Chem. 2017, 60, 243-250.https://doi.org/10.1007/s11426-016-0349-7


71.Luo, Z.; Xiong, W.; Liu, T.; Cheng, W.; Wu, K.; Sun, Y.; Yang, C., Triphenylamine-cored star-shape compounds as non-fullerene acceptor for high-efficiency organic solar cells: Tuning the optoelectronic properties by S/Se-annulated perylene diimide. Org. Electron. 2017, 41, 166-172.https://doi.org/10.1016/j.orgel.2016.10.044


70.Liu, T.; Pan, X.; Meng, X.; Liu, Y.; Wei, D.; Ma, W.; Huo, L.; Sun, X.; Lee, T. H.; Huang, M., Alkyl side‐chain engineering in wide‐bandgap copolymers leading to power conversion efficiencies over 10%. Adv. Mater. 2017, 29, 1604251.https://doi.org/10.1002/adma.201604251


69.Cabero Zabalaga, M. A.; Wei, J.; Yang, H.; Fan, B. B.; Sun, Y.; Zhao, W., Unraveling the Characteristic Shape for Magnetic Field Effects in Polymer–Fullerene Solar Cells. ACS Omega 2017, 2, 7777-7783.https://doi.org/10.1021/acsomega.7b01470


68.Cai, Y.; Zhang, X.; Xue, X.; Wei, D.; Huo, L.; Sun, Y., High-performance wide-bandgap copolymers based on indacenodithiophene and indacenodithieno[3,2-b]thiophene units. J. Mater. Chem. C 2017, 5, 7777-7783.https://doi.org/10.1039/C7TC01909B


67.Pan, X.; Xiong, W.; Liu, T.; Sun, X.; Huo, L.; Wei, D.; Yu, M.; Han, M.; Sun, Y., Influence of 2,2-bithiophene and thieno[3,2-b] thiophene units on the photovoltaic performance of benzodithiophene-based wide-bandgap polymers. J. Mater. Chem. C 2017, 5, 4471-4479.https://doi.org/10.1039/C7TC00720E


66.Cao, Q.; Xiong, W.; Chen, H.; Cai, G.; Wang, G.; Zheng, L.; Sun, Y., Design, synthesis, and structural characterization of the first dithienocyclopentacarbazole-based n-type organic semiconductor and its application in non-fullerene polymer solar cells. J. Mater. Chem. A 2017, 5, 7451-7461.https://doi.org/10.1039/C7TA01143A


65.Fu, H.; Meng, D.; Meng, X.; Sun, X.; Huo, L.; Fan, Y.; Li, Y.; Ma, W.; Sun, Y.; Wang, Z., Influence of alkyl chains on photovoltaic properties of 3D rylene propeller electron acceptors. J. Mater. Chem. A 2017, 5, 3475-3482.Fu, H.; Meng, D.; Meng, X.; Sun, X.; Huo, L.; Fan, Y.; Li, Y.; Ma, W.; Sun, Y.; Wang, Z., Influence of alkyl chains on photovoltaic properties of 3D rylene propeller electron acceptors. J. Mater. Chem. A 2017, 5, 3475-3482.https://doi.org/10.1039/C6TA09049D


64.Liu, X.; Liu, T.; Duan, C.; Wang, J.; Pang, S.; Xiong, W.; Sun, Y.; Huang, F.; Cao, Y., Non-planar perylenediimide acceptors with different geometrical linker units for efficient non-fullerene organic solar cells. J. Mater. Chem. A 2017, 5, 1713-1723.



63.Zhang, C.; Liu, T.; Zeng, W.; Xie, D.; Luo, Z.; Sun, Y.; Yang, C., Thienobenzene-fused perylene bisimide as a non-fullerene acceptor for organic solar cells with a high open-circuit voltage and power conversion efficiency. Mater. Chem. Front. 2017, 1, 749-756.https://doi.org/10.1039/C6QM00194G


【2016年】


62.Fan, B.; Meng, D.; Peng, D.; Lin, S.; Wang, Z.; Sun, Y., Perylene Bisimides as efficient electron transport layers in planar heterojunction perovskite solar cells. Sci. China Chem. 2016, 59, 1658-1662.https://doi.org/10.1007/s11426-016-0147-0


61.Liu, T.; Guo, Y.; Yi, Y.; Huo, L.; Xue, X.; Sun, X.; Fu, H.; Xiong, W.; Meng, D.; Wang, Z.; Liu, F.; Russell, T. P.; Sun, Y., Ternary Organic Solar Cells Based on Two Compatible Nonfullerene Acceptors with Power Conversion Efficiency >10%. Adv. Mater. 2016, 28, 10008-10015.https://doi.org/10.1002/adma.201602570


60.Kan, X.; Xiao, C.; Gao, H.; Wang, Z.; Wu, Y.; Su, B.; Zhang, J.; Wei, Z.; Kong, B.; Hu, W.; Sun, Y.; Jiang, L.; Heeger, A. J., Top-Pinning Controlled Dewetting for Fabrication of Large-Scaled Polymer Microwires and Applications in OFETs. Adv. Electron. Mater. 2016, 2, 1600111.https://doi.org/10.1002/aelm.201600111


59.Lin, Y.; Li, T.; Zhao, F.; Han, L.; Wang, Z.; Wu, Y.; He, Q.; Wang, J.; Huo, L.; Sun, Y.; Wang, C.; Ma, W.; Zhan, X., Structure Evolution of Oligomer Fused-Ring Electron Acceptors toward High Efficiency of As-Cast Polymer Solar Cells. Adv. Energy Mater. 2016, 6, 1600854.https://doi.org/10.1002/aenm.201600854


58.Cheng, P.; Yan, C.; Wu, Y.; Wang, J.; Qin, M.; An, Q.; Cao, J.; Huo, L.; Zhang, F.; Ding, L.; Sun, Y.; Ma, W.; Zhan, X., Alloy Acceptor: Superior Alternative to PCBM toward Efficient and Stable Organic Solar Cells. Adv. Mater. 2016, 28, 8021-8028.https://doi.org/10.1002/adma.201602067


57.Liu, T.; Meng, D.; Cai, Y.; Sun, X.; Li, Y.; Huo, L.; Liu, F.; Wang, Z.; Russell, T. P.; Sun, Y., High-Performance Non-Fullerene Organic Solar Cells Based on a Selenium-Containing Polymer Donor and a Twisted Perylene Bisimide Acceptor. Adv. Sci. 2016, 3, 1600117.https://doi.org/10.1002/advs.201600117


56.Meng, D.; Fu, H.; Xiao, C.; Meng, X.; Winands, T.; Ma, W.; Wei, W.; Fan, B.; Huo, L.; Doltsinis, N. L.; Li, Y.; Sun, Y.; Wang, Z., Three-Bladed Rylene Propellers with Three-Dimensional Network Assembly for Organic Electronics. J. Am. Chem. Soc. 2016, 138, 10184-10190.https://doi.org/10.1021/jacs.6b04368


55.Cai, Y.; Guo, X.; Sun, X.; Wei, D.; Yu, M.; Huo, L.; Sun, Y., A twisted monomeric perylenediimide electron acceptor for efficient organic solar cells. Science China Materials 2016, 59, 427-434.https://doi.org/10.1007/s40843-016-5063-3


54.Lin, Y.; Zhao, F.; He, Q.; Huo, L.; Wu, Y.; Parker, T. C.; Ma, W.; Sun, Y.; Wang, C.; Zhu, D.; Heeger, A. J.; Marder, S. R.; Zhan, X., High-Performance Electron Acceptor with Thienyl Side Chains for Organic Photovoltaics. J. Am. Chem. Soc. 2016, 138, 4955-4961.https://doi.org/10.1021/jacs.6b02004


53.Lin, Y.; He, Q.; Zhao, F.; Huo, L.; Mai, J.; Lu, X.; Su, C.-J.; Li, T.; Wang, J.; Zhu, J.; Sun, Y.; Wang, C.; Zhan, X., A Facile Planar Fused-Ring Electron Acceptor for As-Cast Polymer Solar Cells with 8.71% Efficiency. J. Am. Chem. Soc. 2016, 138, 2973-2976.https://doi.org/10.1021/jacs.6b00853


52.Liu, T.; Huo, L.; Sun, X.; Fan, B.; Cai, Y.; Kim, T.; Kim, J. Y.; Choi, H.; Sun, Y., Ternary Organic Solar Cells Based on Two Highly Efficient Polymer Donors with Enhanced Power Conversion Efficiency. Adv. Energy Mater. 2016, 6, 1502109.https://doi.org/10.1002/aenm.201502109


51.Meng, D.; Sun, D.; Zhong, C.; Liu, T.; Fan, B.; Huo, L.; Li, Y.; Jiang, W.; Choi, H.; Kim, T.; Kim, J. Y.; Sun, Y.; Wang, Z.; Heeger, A. J., High-Performance Solution-Processed Non-Fullerene Organic Solar Cells Based on Selenophene-Containing Perylene Bisimide Acceptor. J. Am. Chem. Soc. 2016, 138, 375-380.https://doi.org/10.1021/jacs.5b11149


50.Gao, G.; Zhang, X.; Meng, D.; Zhang, A.; Liu, Y.; Jiang, W.; Sun, Y.; Wang, Z., Bis(perylene diimide) with DACH bridge as non-fullerene electron acceptor for organic solar cells. RSC Advances 2016, 6, 14027-14033.https://doi.org/10.1039/C5RA26777C


49.Tao, Q.; Liu, T.; Duan, L.; Cai, Y.; Xiong, W.; Wang, P.; Tan, H.; Lei, G.; Pei, Y.; Zhu, W.; Yang, R.; Sun, Y., Wide bandgap copolymers with vertical benzodithiophene dicarboxylate for high-performance polymer solar cells with an efficiency up to 7.49%. J. Mater. Chem. A 2016, 4, 18792-18803.https://doi.org/10.1039/C6TA07364F


48.Xue, X.; Fan, B.; Liu, T.; Sun, X.; Huo, L.; Ha, S. R.; Choi, H.; Kim, T.; Kim, J. Y.; Wei, D.; Yu, M.; Jin, Q.; Sun, Y., Influence of aromatic heterocycle of conjugated side chains on photovoltaic performance of benzodithiophene-based wide-bandgap polymers. Polym. Chem. 2016, 7, 4036-4045.https://doi.org/10.1039/C6PY00640J


47.Gao, W.; Liu, T.; Hao, M.; Wu, K.; Zhang, C.; Sun, Y.; Yang, C., Dithieno[3,2-b:2',3'-d]pyridin-5(4H)-one based D-A type copolymers with wide bandgaps of up to 2.05 eV to achieve solar cell efficiencies of up to 7.33. Chem Sci 2016, 7, 6167-6175.10.1039/C6SC01791F


46.Huang, X.; Weng, K.; Huo, L.; Fan, B.; Yang, C.; Sun, X.; Sun, Y., Effects of a heteroatomic benzothienothiophenedione acceptor on the properties of a series of wide-bandgap photovoltaic polymers. J. Mater. Chem. C 2016, 4, 9052-9059.https://doi.org/10.1039/C6TC02915A


45.Fan, B.; Xue, X.; Meng, X.; Sun, X.; Huo, L.; Ma, W.; Sun, Y., High-performance conjugated terpolymer-based organic bulk heterojunction solar cells. J. Mater. Chem. A 2016, 4, 13930-13937.https://doi.org/10.1039/C6TA05886H


【2015年】


44.Liu, J.; Zhang, H.; Dong, H.; Meng, L.; Jiang, L.; Jiang, L.; Wang, Y.; Yu, J.; Sun, Y.; Hu, W.; Heeger, A. J., High mobility emissive organic semiconductor. Nat. Commun. 2015, 6, 10032.https://doi.org/10.1038/ncomms10032


43.Huo, L.; Liu, T.; Fan, B.; Zhao, Z.; Sun, X.; Wei, D.; Yu, M.; Liu, Y.; Sun, Y., Organic Solar Cells Based on a 2D Benzo[1,2-b:4,5-b′]difuran-Conjugated Polymer with High-Power Conversion Efficiency. Adv. Mater. 2015, 27, 6969-6975.https://doi.org/10.1002/adma.201503023


42.Sun, D.; Meng, D.; Cai, Y.; Fan, B.; Li, Y.; Jiang, W.; Huo, L.; Sun, Y.; Wang, Z., Non-Fullerene-Acceptor-Based Bulk-Heterojunction Organic Solar Cells with Efficiency over 7%. J. Am. Chem. Soc. 2015, 137, 11156-11162.https://doi.org/10.1021/jacs.5b06414


41.Cai, Y.; Huo, L.; Sun, X.; Wei, D.; Tang, M.; Sun, Y., High Performance Organic Solar Cells Based on a Twisted Bay-Substituted Tetraphenyl Functionalized Perylenediimide Electron Acceptor. Adv. Energy Mater. 2015, 5, 1500032.https://doi.org/10.1002/aenm.201500032


40.Huo, L.; Liu, T.; Sun, X.; Cai, Y.; Heeger, A. J.; Sun, Y., Single-Junction Organic Solar Cells Based on a Novel Wide-Bandgap Polymer with Efficiency of 9.7%. Adv. Mater. 2015, 27, 2938-2944.https://doi.org/10.1002/adma.201500647


39.Fan, B.; Peng, D.; Lin, S.; Wang, N.; Zhao, Y.; Sun, Y., Enhanced efficiency of planar-heterojunction perovskite solar cells through a thermal gradient annealing process. RSC Advances 2015, 5, 58041-58045.https://doi.org/10.1039/C5RA09691J


【2014年】


38.Liu, X.; Hsu, B. B. Y.; Sun, Y.; Mai, C.-K.; Heeger, A. J.; Bazan, G. C., High Thermal Stability Solution-Processable Narrow-Band Gap Molecular Semiconductors. J. Am. Chem. Soc. 2014, 136, 16144-16147.https://doi.org/10.1021/ja510088x


37.Liu, X.; Sun, Y.; Hsu, B. B. Y.; Lorbach, A.; Qi, L.; Heeger, A. J.; Bazan, G. C., Design and Properties of Intermediate-Sized Narrow Band-Gap Conjugated Molecules Relevant to Solution-Processed Organic Solar Cells. J. Am. Chem. Soc. 2014, 136, 5697-5708.https://doi.org/10.1021/ja413144u


36.Seifter, J.; Sun, Y.; Heeger, A. J., Transient Photocurrent Response of Small-Molecule Bulk Heterojunction Solar Cells. Adv. Mater. 2014, 26, 2486-2493.https://doi.org/10.1002/adma.201305160


35.Sun, Y.; Seifter, J.; Wang, M.; Perez, L. A.; Luo, C.; Bazan, G. C.; Huang, F.; Cao, Y.; Heeger, A. J., Effect of Molecular Order on the Performance of Naphthobisthiadiazole-Based Polymer Solar Cells. Adv. Energy Mater. 2014, 4, 1301601.https://doi.org/10.1002/aenm.201301601


【2013年】


34.Liu, J.; Sun, Y.; Moonsin, P.; Kuik, M.; Proctor, C. M.; Lin, J.; Hsu, B. B.; Promarak, V.; Heeger, A. J.; Nguyen, T.-Q., Tri-Diketopyrrolopyrrole Molecular Donor Materials for High-Performance Solution-Processed Bulk Heterojunction Solar Cells. Adv. Mater. 2013, 25, 5898-5903.https://doi.org/10.1002/adma.201302007


33.Jo, J.; Pouliot, J.-R.; Wynands, D.; Collins, S. D.; Kim, J. Y.; Nguyen, T. L.; Woo, H. Y.; Sun, Y.; Leclerc, M.; Heeger, A. J., Enhanced Efficiency of Single and Tandem Organic Solar Cells Incorporating a Diketopyrrolopyrrole-Based Low-Bandgap Polymer by Utilizing Combined ZnO/Polyelectrolyte Electron-Transport Layers. Adv. Mater. 2013, 25, 4783-4788.https://doi.org/10.1002/adma.201301288


32.Kaake, L. G.; Sun, Y.; Bazan, G. C.; Heeger, A. J., Fullerene concentration dependent bimolecular recombination in organic photovoltaic films. Appl. Phys. Lett. 2013, 102.https://doi.org/10.1063/1.4799348


【2012年】


31.Liu, X.; Sun, Y.; Perez, L. A.; Wen, W.; Toney, M. F.; Heeger, A. J.; Bazan, G. C., Narrow-Band-Gap Conjugated Chromophores with Extended Molecular Lengths. J. Am. Chem. Soc. 2012, 134, 20609-20612.https://doi.org/10.1021/ja310483w


30.Takacs, C. J.; Sun, Y.; Welch, G. C.; Perez, L. A.; Liu, X.; Wen, W.; Bazan, G. C.; Heeger, A. J., Solar Cell Efficiency, Self-Assembly, and Dipole–Dipole Interactions of Isomorphic Narrow-Band-Gap Molecules. J. Am. Chem. Soc. 2012, 134, 16597-16606.https://doi.org/10.1021/ja3050713


29.Wang, M.; Mohebbi, A. R.; Sun, Y.; Wudl, F., Ribbons, Vesicles, and Baskets: Supramolecular Assembly of a Coil–Plate–Coil Emeraldicene Derivative. Angew. Chem. Int. Ed. 2012, 51, 6920-6924.https://doi.org/10.1002/anie.201201796


28.Wang, M.; Chesnut, E.; Sun, Y.; Tong, M.; Guide, M.; Zhang, Y.; Treat, N. D.; Varotto, A.; Mayer, A.; Chabinyc, M. L.; Nguyen, T.-Q.; Wudl, F., PCBM Disperse-Red Ester with Strong Visible-Light Absorption: Implication of Molecular Design and Morphological Control for Organic Solar Cells. J. Phys. Chem. C 2012, 116, 1313-1321.https://doi.org/10.1021/jp209782c


27.Leong, W. L.; Welch, G. C.; Kaake, L. G.; Takacs, C. J.; Sun, Y.; Bazan, G. C.; Heeger, A. J., Role of trace impurities in the photovoltaic performance of solution processed small-molecule bulk heterojunction solar cells. Chem. Sci. 2012, 3, 2103-2109.https://doi.org/10.1039/C2SC20157G


26.Sun, Y.; Welch, G. C.; Leong, W. L.; Takacs, C. J.; Bazan, G. C.; Heeger, A. J., Solution-processed small-molecule solar cells with 6.7% efficiency. Nat. Mater. 2012, 11, 44-48.https://doi.org/10.1038/nmat3160


【2011年】


25.Wang, C.-L.; Zhang, W.-B.; Van Horn, R. M.; Tu, Y.; Gong, X.; Cheng, S. Z. D.; Sun, Y.; Tong, M.; Seo, J.; Hsu, B. B. Y.; Heeger, A. J., A Porphyrin–Fullerene Dyad with a Supramolecular “Double-Cable” Structure as a Novel Electron Acceptor for Bulk Heterojunction Polymer Solar Cells. Adv. Mater. 2011, 23, 2951-2956.https://doi.org/10.1002/adma.201100399


24.Seo, J. H.; Gutacker, A.; Sun, Y.; Wu, H.; Huang, F.; Cao, Y.; Scherf, U.; Heeger, A. J.; Bazan, G. C., Improved High-Efficiency Organic Solar Cells via Incorporation of a Conjugated Polyelectrolyte Interlayer. J. Am. Chem. Soc. 2011, 133, 8416-8419.https://doi.org/10.1021/ja2037673


23.Gong, X.; Tong, M.; Brunetti, F. G.; Seo, J.; Sun, Y.; Moses, D.; Wudl, F.; Heeger, A. J., Bulk Heterojunction Solar Cells with Large Open-Circuit Voltage: Electron Transfer with Small Donor-Acceptor Energy Offset. Adv. Mater. 2011, 23, 2272-2277.https://doi.org/10.1002/adma.201003768


22.Sun, Y.; Takacs, C. J.; Cowan, S. R.; Seo, J. H.; Gong, X.; Roy, A.; Heeger, A. J., Efficient, Air-Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode Interfacial Layer. Adv. Mater. 2011, 23, 2226-2230.https://doi.org/10.1002/adma.201100038


21.Sun, Y.; Seo, J. H.; Takacs, C. J.; Seifter, J.; Heeger, A. J., Inverted Polymer Solar Cells Integrated with a Low-Temperature-Annealed Sol-Gel-Derived ZnO Film as an Electron Transport Layer. Adv. Mater. 2011, 23, 1679-1683.https://doi.org/10.1002/adma.201004301


20.Moon, J. S.; Takacs, C. J.; Sun, Y.; Heeger, A. J., Spontaneous Formation of Bulk Heterojunction Nanostructures: Multiple Routes to Equivalent Morphologies. Nano Lett. 2011, 11, 1036-1039.https://doi.org/10.1021/nl200056p


19.Wang, M.; Sun, Y.; Tong, M.; Chesnut, E. S.; Seo, J. H.; Kumar, R.; Wudl, F., The NSN link as electron accepting moiety for stable, solution-processable conjugated oligomers. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 441-451.https://doi.org/10.1002/pola.24456


18.Sun, Y.; Wang, M.; Gong, X.; Seo, J. H.; Hsu, B. B. Y.; Wudl, F.; Heeger, A. J., Polymer bulk heterojunction solar cells: function and utility of inserting a hole transport and electron blocking layer into the device structure. J. Mater. Chem. 2011, 21, 1365-1367.https://doi.org/10.1039/C0JM02224A


17.Lin, S. W.; Sun, Y. M.; Song, A. M., Enhanced stability of poly(3-hexylthiophene) transistors with optimally cured poly(methyl methacrylate) dielectric layers. Synth. Met. 2010, 160, 2430-2434.https://doi.org/10.1016/j.synthmet.2010.09.022


【2010年】


16.Sun, Y.; Gong, X.; Hsu, B. B. Y.; Yip, H.-L.; Jen, A. K.-Y.; Heeger, A. J., Solution-processed cross-linkable hole selective layer for polymer solar cells in the inverted structure. Appl. Phys. Lett. 2010, 97.https://doi.org/10.1063/1.3518074


15.Sun, Y.; Lu, X.; Lin, S.; Kettle, J.; Yeates, S. G.; Song, A., Polythiophene-based field-effect transistors with enhanced air stability. Org. Electron. 2010, 11, 351-355.https://doi.org/10.1016/j.orgel.2009.10.019


【2007年】


14.Guo, Y.; Liu, Y.; Di, C.-a.; Yu, G.; Wu, W.; Ye, S.; Wang, Y.; Xu, X.; Sun, Y., Tuning the threshold voltage by inserting a thin molybdenum oxide layer into organic field-effect transistors. Appl. Phys. Lett. 2007, 91.https://doi.org/10.1063/1.2822443


13.Wang, Y.; Zhou, E.; Liu, Y.; Xi, H.; Ye, S.; Wu, W.; Guo, Y.; Di, C.-a.; Sun, Y.; Yu, G.; Li, Y., Solution-Processed Organic Field-Effect Transistors Based on Polythiophene Derivatives with Conjugated Bridges as Linking Chains. Chem. Mater. 2007, 19, 3361-3363.https://doi.org/10.1021/cm070884m


12.Di, C. A.; Yu, G.; Liu, Y. Q.; Xu, X. J.; Wei, D. C.; Song, Y. B.; Sun, Y. M.; Wang, Y.; Zhu, D. B., Organic Light-Emitting Transistors Containing a Laterally Arranged Heterojunction. Adv. Funct. Mater. 2007, 17, 1567-1573.https://doi.org/10.1002/adfm.200601140


11.Sun, Y.; Tan, L.; Jiang, S.; Qian, H.; Wang, Z.; Yan, D.; Di, C.; Wang, Y.; Wu, W.; Yu, G.; Yan, S.; Wang, C.; Hu, W.; Liu, Y.; Zhu, D., High-Performance Transistor Based on Individual Single-Crystalline Micrometer Wire of Perylo[1,12-b,c,d]thiophene. J. Am. Chem. Soc. 2007, 129, 1882-1883.https://doi.org/10.1021/ja068079g


【2006年】


10.Di, C.-a.; Yu, G.; Liu, Y.; Xu, X.; Wei, D.; Song, Y.; Sun, Y.; Wang, Y.; Zhu, D.; Liu, J.; Liu, X.; Wu, D., High-Performance Low-Cost Organic Field-Effect Transistors with Chemically Modified Bottom Electrodes. J. Am. Chem. Soc. 2006, 128, 16418-16419.https://doi.org/10.1021/ja066092v


9.Chen, S.; Liu, Y.; Xu, Y.; Sun, Y.; Qiu, W.; Sun, X.; Zhu, D., Langmuir–Blodgett film of new phthalocyanine containing oxadiazol groups and its application in field-effect transistor. Synth. Met. 2006, 156, 1236-1240.https://doi.org/10.1016/j.synthmet.2006.09.004


8.Wang, Y.; Wang, H.; Liu, Y.; Di, C.-a.; Sun, Y.; Wu, W.; Yu, G.; Zhang, D.; Zhu, D., 1-Imino Nitroxide Pyrene for High Performance Organic Field-Effect Transistors with Low Operating Voltage. J. Am. Chem. Soc. 2006, 128, 13058-13059.https://doi.org/10.1021/ja064580x


7.Sun, Y.; Liu, Y.; Ma, Y.; Di, C.; Wang, Y.; Wu, W.; Yu, G.; Hu, W.; Zhu, D., Organic thin-film transistors with high mobilities and low operating voltages based on 5,5′-bis-biphenyl-dithieno[3,2-b:2′,3′-d]thiophene semiconductor and polymer gate dielectric. Appl. Phys. Lett. 2006, 88.https://doi.org/10.1063/1.2209213


6.Sun, Y. M.; Ma, Y. Q.; Liu, Y. Q.; Lin, Y. Y.; Wang, Z. Y.; Wang, Y.; Di, C. A.; Xiao, K.; Chen, X. M.; Qiu, W. F.; Zhang, B.; Yu, G.; Hu, W. P.; Zhu, D. B., High-Performance and Stable Organic Thin-Film Transistors Based on Fused Thiophenes. Adv. Funct. Mater. 2006, 16, 426-432.https://doi.org/10.1002/adfm.200500547


5.Sun, Y.; Rohde, D.; Liu, Y.; Wan, L.; Wang, Y.; Wu, W.; Di, C.; Yu, G.; Zhu, D., A novel air-stable n-type organic semiconductor: 4,4′-bis[(6,6′-diphenyl)-2,2-difluoro-1,3,2-dioxaborine] and its application in organic ambipolar field-effect transistors. J. Mater. Chem. 2006, 16, 4499-4503.https://doi.org/10.1039/B608840F


【2005年】


4.Li, X.; Liu, Y.; Shi, D.; Sun, Y.; Yu, G.; Zhu, D.; Liu, H.; Liu, X.; Wu, D., Orientational self-assembled field-effect transistors based on a single-walled carbon nanotube. Appl. Phys. Lett. 2005, 87.https://doi.org/10.1063/1.2137464


3.Xiao, K.; Liu, Y.; Hu, P. a.; Yu, G.; Sun, Y.; Zhu, D., n-Type Field-Effect Transistors Made of an Individual Nitrogen-Doped Multiwalled Carbon Nanotube. J. Am. Chem. Soc. 2005, 127, 8614-8617.https://doi.org/10.1021/ja042554y


2.SUN, Y., Advances in organic field-effect transistors. J. Mater. Chem. 2005, 15, 53-65.https://doi.org/10.1039/B411245H


1.Sun, Y. M.; Xiao, K.; Liu, Y. Q.; Wang, J. L.; Pei, J.; Yu, G.; Zhu, D. B., Oligothiophene-Functionalized Truxene: Star-Shaped Compounds for Organic Field-Effect Transistors. Adv. Funct. Mater. 2005, 15, 818-822.https://doi.org/10.1002/adfm.200400380