部分发表论文:
加入湖南大学之后
2024年
Han H, Li Z, Feng Y, Song H, Fang Z, Zhang D, Yuan D, Shi J*. Peptide degrader-based targeting of METTL3/14 improves immunotherapy response in cutaneous melanoma. Angew Chem Int Ed Engl. 2024 Aug 13:e202407381. doi: 10.1002/anie.202407381. Epub ahead of print. PMID: 39136347.
Cai Y, Xiang Y, Dong H, Huang W, Liu Y, Zhao C, Yuan D*, Li Y*, Shi J*. Injectable self-assembling peptide hydrogel as a promising vitreous substitute. J Control Release. 2024, 376, 402–412 . doi: 10.1016/j.jconrel.2024.10.016. Epub ahead of print. PMID: 39401678.
Li T, Ren X, Luo X, Wang Z, Li Z, Luo X, Shen J, Li Y, Yuan D, Nussinov R, Zeng X*,Shi J*, Cheng F*. A Foundation Model Identifies Broad-Spectrum Antimicrobial Peptides against Drug-Resistant Bacterial Infection. Nat. Commun. 2024 2024-01-01;15(1):7538.
Shang S#, Han H, Liu K, Li Z, Zhang J, Zhang L, Ju D, Wei D, Yuan J, Zhu Z*, Shi J*.Synergistic antitumor activity of METTL3 peptide degrader and immune checkpoint inhibitor in advanced urothelial cancer. J CLIN ONCOL. 2024 2024-05-29;42(16_suppl):e14623.
Wu X#, Shen J#, Jiang X, Han H, Li Z, Xiang Y, Yuan D*, Shi J*. Targeting Glut1 Degradation with Assembling Glycopeptide for Cancer Inhibition. CHEM ENG J. 2024; 493:152479. https://doi.org/https://doi.org/10.1016/j.cej.2024.152479.
Wu, X.#, M. Yan#, J. Shen, Y. Xiang, K. Jian, X. Pan*, D. Yuan*, and J. Shi*. 2024. Enhancing calvarial defects repair with pdgf-bb mimetic peptide hydrogels. Journal of Controlled Release 370: 277-86. doi:https://doi.org/10.1016/j.jconrel.2024.04.045.
Li, Z. #, Y. Feng#, H. Han, X. Jiang, W. Chen, X. Ma, Y. Mei, D. Yuan, D. Zhang*, and J. Shi*. 2024. A stapled peptide inhibitor targeting the binding interface of n6-adenosine-methyltransferase subunits mettl3 and mettl14 for cancer therapy. Angewandte Chemie International Edition n/a: e202402611. doi:https://doi.org/10.1002/anie.202402611.
Ren X#, Wei J#, Luo X, Liu Y, Li K, Zhang Q, Gao X, Yan S, Wu X, Jiang X, Liu M, Cao D, Wei L, Zeng X* and Shi J*. 2024. Hydrogelfinder: a foundation model for efficient self-assembling peptide discovery guided by non-peptidal small molecules. Advanced Science n/a: 2400829. doi:https://doi.org/10.1002/advs.202400829.
Lopez-Silva, T. L.; Samdin, T. D.; Anderson, C. F.; Bell, D. R.; Suarez Alvarez, E.; Kasprzak, W. K.; Shi, J. *; Schneider, J*. P. Impact of glycosylation on self-assembled peptide hydrogels. Chem. Mater. 2024, DOI: 10.1021/acs.chemmater.4c00291.
Deng, T.; Xie, W.; Huang, X.; Wu, X.; Shen, X.; Shi, J*.; Yuan, D*. A dual-responsive peptide hydrogel protects normal cells from anticancer drug treatments. ACS Applied Nano Materials 2024, 7(5), 5124-5131, DOI: 10.1021/acsanm.3c05815.
Chen, W.; Li, Z.; Zhao, C.; Zha, L.; Shi, J*.; Yuan, D*. Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chem. Lett. 2024, 109628, DOI: https://doi.org/10.1016/j.cclet.2024.109628.
Zhou, J.; Cai, Y.; Li, T.; Zhou, H.; Dong, H.; Wu, X.; Li, Z.; Wang, W.; Yuan, D*.; Li, Y*.; Shi, J*. Aflibercept loaded eye-drop hydrogel mediated with cell-penetrating peptide for corneal neovascularization treatment. Small 2024, 20(2), 2302765, DOI: https://doi.org/10.1002/smll.202302765.
2023年
Chen, S. #; Li, Z. #; Zhang C. #; Wu, X.; Wang, X.; Chen, W.; Shi, J.*; Yuan, D.* Cation-π interaction trigger Supramolecular Hydrogelation of Peptide Amphiphiles. Small, 2023;19:e2301063.
Zhu C, Li T, Wang Z, Li Z, Wei J, Han H, Yuan D, Cai M, * Shi J.*, MC1R Peptide Agonist Self-Assembles into a Hydrogel That Promotes Skin Pigmentation for Treating Vitiligo. ACS Nano. 2023;17:8723-8733.
Li T, Zhu C, Liang C, Deng T, Wu X, Wen K, Feng X, Yuan D, Xu B, * Shi J.*, Surface-Induced Peptide Nanofibers for Selective Bacteria Trapping. ACS Applied Nano Materials. 2023;6:7785-7793.
2022年
Dong H., Wang M., Fan S., Wu C., Zhang, C. Wu X., Xue B., Cao Y., Deng J., Yuan D.,* Shi J.*, Redox-Regulated Conformational Change of Disulfide-Rich Assembling Peptides. Angew. Chem. Int. Ed., 2022, e202212829
Jian, K.#, Yang, C.#, Li, T., Wu, X., Shen, J., Wei, J., Yang, Z., Yuan, D.*, Zhao, M.*, Shi, J.*, PDGF-BB-Derived Supramolecular Hydrogel for Promoting Skin Wound Healing. J. Nanobiotechnology, 2022, 20(1)
2021年
Zou, C.; Wan, Y.; He, L.; Zheng, J. H.; Mei, Y.; Shi, J.; Zhang, M.; Dong, Z.; Zhang, D., RBM38 in cancer: role and mechanism. Cell Mol Life Sci 2021, 78 (1), 117-128.
Chen, Y.; Liu, X.; Guo, Y.; Wang, J.; Zhang, D.; Mei, Y.; Shi, J.; Tan, W.; Zheng, J. H., Genetically engineered oncolytic bacteria as drug delivery systems for targeted cancer theranostics. Acta Biomater 2021, 124, 72-87.
Poulami, M.; Anand, S.; Ziqiu, W.; Kingshuk, D.; Roma, P.; Chen, L.; Caroline, A.; L, P. N.; Junfeng, S.; Natalia, d. V.; R, W. S. T.; Byungyun, J. A.; Baktiar, K.; D, H. C.; P, S. J., Surface-fill hydrogel attenuates the oncogenic signature of complex anatomical surface cancer in a single application. Nature nanotechnology 2021, 16 (11).
2020年
Shy, A. N.; Li, J.; Shi, J.; Zhou, N.; Xu, B., Enzyme-instructed self-assembly of the stereoisomers of pentapeptides to form biocompatible supramolecular hydrogels. J Drug Target 2020, 28 (7-8), 760-765.
加入湖南大学之前
1. Shi, J.F., Schneider J.P.*, “De novo design of selective membrane-active peptides via enzymatic control of their conformational bias on the cell surface”, Angew. Chem. Int. Ed.,. 2019, 58, 13706 –13710
2. Shi, J.F., Fichman G., Schneider J.P.*, “Enzymatic Control of the Conformational Landscape of Supramolecular Assembling Peptides”, Angew. Chem. Int. Ed. 2018, 57, 11188-11192.
3. Haburcak, R.#; Shi, J.F#; Du, X.; Yuan, D.; Xu, B.*, Ligand-Receptor Interaction Modulates the Energy Landscape of Enzyme-Instructed Self-Assembly of Small Molecules. J. Am. Chem. Soc. 2016, 138,47, 15397. (# 共同一作)
4. Shi, J.; Du, X.; Huang, Y.; Zhou, J.; Yuan, D.; Wu, D.; Zhang, Y.; Haburcak, R.; Epstein, I. R.; Xu, B.*, Ligand-Receptor Interaction Catalyzes the Aggregation of Small Molecules to Induce Cell Necroptosis. J Am Chem Soc,2015,137, 1, 26-29
5. Shi, J.F.; Xu, B.*, Nanoscale assemblies of small molecules control the fate of cells. Nano Today 2015, 10 (5), 615-630.(IF=17)
6. Yuan, D.#; Shi, J. F.#; Du, X. W.; Zhou, N.; Xu, B.*, Supramolecular Glycosylation Accelerates Proteolytic Degradation of Peptide Nanofibrils. J Am Chem Soc, 2015, 137 (32), 10092-10095. (# 共同一作, 亮点文章 )
7. Shi, J.; Du, X.; Yuan, D.; Haburcak, R.; Wu, D.; Zhou, N.; Xu, B.*, Enzyme transformation to modulate the ligand–receptor interactions between small molecules. Chem Commun 2015, 51 (23), 4899-4901.
8. Shi, J. F.; Du, X. W.; Yuan, D.; Haburcak, R.; Zhou, N.; Xu, B.*, Supramolecular Detoxification of Neurotoxic Nanofibrils of Small Molecules via Morphological Switch. Bioconj. Chem. 2015, 26 (9), 1879-1883.
9. Shi, J.; Du, X.; Yuan, D.; Zhou, J.; Zhou, N.; Huang, Y.; Xu, B.*, d-Amino Acids Modulate the Cellular Response of Enzymatic-Instructed Supramolecular Nanofibers of Small Peptides. Biomacromolecules 2014, 15 (10), 3559-3568.
10. Shi, J.F.; Yuan, D.; Haburcak, R.; Zhang, Q.; Zhao, C.; Zhang, X.; Xu, B.*, Enzymatic Dissolution of Biocomposite Solids Consisting of Phosphopeptides to Form Supramolecular Hydrogels. Chemistry – A European Journal 2015, 21(50), 18047-18051.
11. Shi, J.; Gao, Y.; Yang, Z.; Xu, B.*, Exceptionally small supramolecular hydrogelators based on aromatic–aromatic interactions. Beilstein J. Org. Chem. 2011, 7 (1), 167-172.
12. Shi, J.; Gao, Y.; Zhang, Y.; Pan, Y.; Xu, B.*, Calcium ions to cross-link supramolecular nanofibers to tune the elasticity of hydrogels over orders of magnitude. Langmuir 2011, 27 (23), 14425-14431.
13. Huang, Y. #; Shi, J.#; Yuan, D.; Zhou, N.; Xu, B.*, Length‐dependent proteolytic cleavage of short oligopeptides catalyzed by matrix metalloprotease‐9. Pept. Sci. 2013, 100 (6), 790-795. (# 共同一作)
14. Shi, J.; Pan, Y.; Gao, Y.; Xu, B.*, Evaluation of the effects of phenylalanine and carboxylate on the rheological behaviors of small molecule hydrogelators containing naphthalene. MRS Proceedings 2012, 1418, mrsf11-1418-ll06-03.
15. Wang, H.; Shi, J.F; Feng, Z.; Zhou, R.; Wang, S.; Rodal, A. A.; Xu, B.*, An in-situ Dynamic Continuum of Supramolecular Phosphoglycopeptides Enables Formation of 3D Cell Spheroids. Angew. Chem. Int. Ed. 2017, 56 (51), 16297-16301 (VIP, 5%)
16. Hu, X. R.; Shi, J. F.; Thomas, S. W.*, Photolabile ROMP gels using ortho-nitrobenzyl functionalized crosslinkers. Polym. Chem. 2015, 6 (27), 4966-4971
17. Kuang, Y.; Shi, J.F.; Li, J.; Yuan, D.; Alberti, K. A.; Xu, Q.; Xu, B.*, Pericellular Hydrogel/Nanonets Inhibit Cancer Cells. Angew. Chem. Int. Ed. 2014, 53 (31), 8104-8107. (高被引文章, C&EN 报道)
18. Yuan, D.; Shi, J.F.; Du, X.; Huang, Y.; Gao, Y.; Baoum, A. A.; Xu, B*., The enzyme-instructed assembly of the core of yeast prion Sup35 to form supramolecular hydrogels. J. Mater. Chem. B 2016, 4 (7), 1318-1323
19. Gao, Y.; Shi, J.; Yuan, D.; Xu, B.*, Imaging enzyme-triggered self-assembly of small molecules inside live cells. Nat. Commun. 2012, 3, 1033. (高被引文章)
20. Li, J.; Shi, J.F; Medina, J. E.; Zhou, J.; Du, X.; Wang, H.; Yang, C.; Liu, J.; Yang, Z.; Dinulescu, D. M.; Xu, B.*, Selectively Inducing Cancer Cell Death by Intracellular Enzyme-Instructed Self-Assembly (EISA) of Dipeptide Derivatives. Adv Healthc Mater 2017, 6 (15), 1601400.
21. Du, X.; Zhou, J.; Shi, J.F.; Xu, B.*, Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chem. Rev., 2015, 115, 24, 13165-13307. (高被引文章, IF=52.61)
22. Du, X.; Zhou, J.; Wang, H.; Shi, J.; Kuang, Y.; Zeng, W.; Yang, Z.; Xu, B.*, In situ generated D-peptidic nanofibrils as multifaceted apoptotic inducers to target cancer cells. Cell Death Dis. 2017, 8, e2614
23. J. Zhou, X. Du, C. Berciu, H. He, J. Shi, D. Nicastro and B. Xu*, Enzyme-Instructed Self-Assembly for Spatiotemporal Profiling of the Activities of Alkaline Phosphatases on Live Cells, Chem, 2016, 1, 246-263.
24. Z. Feng, H. Wang, X. Du, J. Shi, J. Li and B. Xu*, Minimal C-terminal modification boosts peptide self-assembling ability for necroptosis of cancer cells, Chem. Commun., 2016, 52, 6332-6335.
25. Li, J.; Kuang, Y.; Shi, J. F.; Zhou, J.; Medina, J. E.; Zhou, R.; Yuan, D.; Yang, C. H.; Wang, H. M.; Yang, Z. M.; Liu, J. F.; Dinulescu, D. M.; Xu, B.*, Enzyme-Instructed Intracellular Molecular Self-Assembly to Boost Activity of Cisplatin against Drug-Resistant Ovarian Cancer Cells. Angew Chem Int Ed., 2015, 54 (45), 13307-13311.
26. Yuan, D.; Du, X.; Shi, J.; Zhou, N.; Zhou, J.; Xu, B.*, Mixing Biomimetic Heterodimers of Nucleopeptides to Generate Biocompatible and Biostable Supramolecular Hydrogels. Angew. Chem. Int. Ed. 2015, 54, 5705-5708
27. Zhang, Y.; Zhou, N.; Shi, J.; Pochapsky, S. S.; Pochapsky, T. C.; Zhang, B.; Zhang, X.; Xu, B.*, Unfolding a molecular trefoil derived from a zwitterionic metallopeptide to form self-assembled nanostructures. Nat commun. 2015, 6, 6165
28. Wu, D.; Du, X.; Shi, J.; Zhou, J.; Zhou, N.; Xu, B.*, The first CD73-instructed supramolecular hydrogel. J Colloid Interf Sci, 2015, 447, 269-272
29. Wu, D.; Zhou, J.; Shi, J.; Du, X.; Xu, B.*, A naphthalene-containing amino acid enables hydrogelation of a conjugate of nucleobase–saccharide–amino acids. Chem Commun 2014, 50 (16), 1992-1994.
30. Zhao, F.; Li, J.; Zhou, N.; Sakai, J.; Gao, Y.; Shi, J.; Goldman, B.; Browdy, H. M.; Luo, H. R.; Xu, B.*, De Novo Chemoattractants Form Supramolecular Hydrogels for Immunomodulating Neutrophils In Vivo. Bioconj. Chem. 2014, 25 (12), 2116-2122.
31. Zhang, Y.; Zhang, B.; Kuang, Y.; Gao, Y.; Shi, J.; Zhang, X. X.; Xu, B.*, A Redox Responsive, Fluorescent Supramolecular Metallohydrogel Consists of Nanofibers with Single-Molecule Width. J Am Chem Soc, 2013, 135(13), 5008-5011.
32. Li, J.; Kuang, Y.; Gao, Y.; Du, X.; Shi, J.; Xu, B.*, D-Amino acids boost the selectivity and confer supramolecular hydrogels of a nonsteroidal anti-inflammatory drug (NSAID). J Am Chem Soc, 2012, 135 (2), 542-545. (高被引文章, C&EN 报道)
33. Pan, Y.; Gao, Y.; Shi, J.; Wang, L.; Xu, B.*, A versatile supramolecular hydrogel of nitrilotriacetic acid (NTA) for binding metal ions and magnetorheological response. J. Mater. Chem. 2011, 21 (19), 6804-6806.
34. Li, X.; Kuang, Y.; Lin, H. C.; Gao, Y.; Shi, J.; Xu, B.*, Supramolecular nanofibers and hydrogels of nucleopeptides. Angew. Chem. Int. Ed. 2011, 50 (40), 9365-9369.
35. Kuang, Y.; Gao, Y.; Shi, J.; Lin, H.-C.; Xu, B.*, Supramolecular hydrogels based on the epitope of potassium ion channels. Chem Commun 2011, 47 (31), 8772-8774.
36. Li, X.; Kuang, Y.; Shi, J.; Gao, Y.; Lin, H.-C.; Xu, B.*, Multifunctional, biocompatible supramolecular hydrogelators consist only of nucleobase, amino acid, and glycoside. J Am Chem Soc, 2011, 133 (43), 17513-17518.
37. Huang, Y.; Qiu, Z.; Xu, Y.; Shi, J.; Lin, H.; Zhang, Y.*, Supramolecular hydrogels based on short peptides linked with conformational switch. Org. Biomol. Chem. 2011, 9 (7), 2149-2155.
38. Song, F.; Zhang, L.-M.*; Li, N.-N.; Shi, J.-F., In situ crosslinkable hydrogel formed from a polysaccharide-based hydrogelator. Biomacromolecules 2009, 10 (4), 959-965.
专利
Xu, B.; Shi. J.F.; Kuang. Y.; “Synthetic peptides, enzymatic formation of pericellular hydrogels/ nanofibrils, and methods of use” US11155576B2