2024年
[137] N. Li, X. Han, X. Cui, C. Xu*, C. Mao*, X. Dai*, and W. Xue*. Recent Progress in Liquid Electrolytes for High-Energy Lithium-Metal Batteries: From Molecular Engineering to Applications. Advanced Functional Materials, 2024, 2409431. https://onlinelibrary.wiley.com/doi/10.1002/adfm.202409431
[136] Q. Zhao, K. Zhao, G. Han, M. Huang, R. Wang*, Z. Wang, W. Zhou, Y. Ma, J. Liu, Z. Wang, C. Xu*, G. Huang, J. Wang, F. Pan, and J. Baek*. High-capacity, fast-charging and long-life magnesium/black phosphorous composite negative electrode for non-aqueous magnesium battery. Nature Communications, 2024, 15, 8680. https://www.nature.com/articles/s41467-024-52949-4
[135] D. Wang, Z. Zhang, Y. Hao, H. Jia, X. Shen, B. Qu*, C. Xu*, G. Huang, X. Zhou*, J. Wang*, and F. Pan, .Challenges and Progress in Rechargeable Magnesium-based Batteries: Materials, Interfaces, and Devices, Advanced Functional Materials, 2024, 2410406. https://onlinelibrary.wiley.com/doi/10.1002/adfm.202410406
[134] G. Lu, M. Li, R. Deng, W. Hou, L. Lu, S. Song, C. Xu*, and R. Wang*, Ultralong lifespan solid-state sodium battery with a supersodiophilic and fast ionic conductive composite sodium anode, Energy Storage Materials, 2024, 72, 103755. https://linkinghub.elsevier.com/retrieve/pii/S2405829724005816
[133] Y. Wang#*, Z. Wang#, X. Xu, S. Oh, J. Sun, F. Zheng, X. Lu, C. Xu*, B. Yan, G. Huang, Li Lu*, Ultra-stable Sodium-ion Battery Enabled by All-solid-state Ferroelectric-engineered Composite Electrolytes, Nano-Micro Letters, 2024, 16, 254. https://link.springer.com/article/10.1007/s40820-024-01474-6
[132] X. Hu*, Z. Wu, and C. Xu*, Precise construction of RuPt dual single-atomic sites to optimize oxygen electrocatalytic behaviors for high-performance Zn-air batteries, Journal of Energy Chemistry, 2024, 97, 520-528. https://doi.org/10.1016/j.jechem.2024.06.010
[131] X. Hu*, J. Fan, X. Li, Z. Wu, Y. Li, C. Xu*, Interfaces engineering of heterostructured NiCoP/NiFe LDH@CC for attaining high catalytic activity in long-lasting rechargeable Zn–air batteries, Rare Metals, 2024, published online. https://doi.org/10.1007/s12598-024-02748-z
[130] R. Deng, Z. Wang, S. Tan, X. Huang, Z. Gao, Y. Fang, C. Chen, R. Wang, C. Xu*, G. Huang, J. Wang, and F. Pan*, Optimization of the electrode reaction kinetics of V2O5 via polyacrylonitrile interaction for high-performance magnesium batteries, Chemical Engineering Journal, 2024, 489, 151095. https://doi.org/10.1016/j.cej.2024.151095
[129] X. Hu*, X. Chen, X. Li, and C. Xu*, Engineering the Electronic Interaction Between Single Au Atoms and CoN Through Nitrogen-Coordination Bonding as an Efficient Bifunctional Electrocatalyst for Rechargeable Zn-Air Batteries, Advanced Functional Materials, 2024, 34(27), 2316699. https://onlinelibrary.wiley.com/doi/10.1002/adfm.202316699
[128] M. Zhang, X. Wang, J. Ding, C. Ban, Y. Feng, C. Xu*, and X. Zhou*, Realizing ampere-level CO2 electrolysis at low voltage over a woven network of few-atom-layer ultralong silverene nanobelts with ultrahigh aspect ratio by pairing with formaldehyde oxidation, Nanoscale, 2024, 16, 7076-7084. https://doi.org/10.1039/D4NR00361F
[127] R. Deng, G. Lu, Z. Wang, S. Tan, X. Huang, R. Li, M. Li, R. Wang, C. Xu*, G. Huang, J. Wang, X. Zhou*, F. Pan*, Catalyzing Desolvation at Cathode-Electrolyte Interface Enabling High-Performance Magnesium-Ion Batteries, Small, 2024, 2311587. https://onlinelibrary.wiley.com/doi/10.1002/smll.202311587
[126] S. Tan, J. Xu, R. Deng, Q. Zhao, C. Xu*, G. Huang, J. Wang, and F. Pan*, A Perspective on the Key Factors of Safety for Rechargeable Magnesium Batteries, Journal of Energy Chemistry, 2024, 94, 656-676. https://doi.org/10.1016/j.jechem.2024.03.015
[125] Z. Li, W. Zheng, G. Lu, M. Li, D. Tang, Q. Zhao, Y. Wang, C. Xu*, and R. Wang*, Superionic Conductor Enabled Composite Lithium with High Ionic Conductivity and Interfacial Wettability for Solid-State Lithium Batteries, Advanced Functional Materials, 2024, 34(12), 2309751. https://onlinelibrary.wiley.com/doi/10.1002/adfm.202309751
[124] R. Deng, Z. Wang, S. Tan, G. Lu, X. Huang, B. Qu, G. Huang, C. Xu*, X. Zhou, J. Wang, F. Pan*, Organic Molecular Intercalation Enabled Anionic Redox Chemistry with Fast Kinetics for High Performance Magnesium Storage, Small, 2024, 22(12), 2308329. https://onlinelibrary.wiley.com/doi/10.1002/smll.202308329
2023年
[123] B. Jang, Q. Zhao, J. Baek, J. Seo, J. Jeon, D. Kweon, G. Han, C. Xu*, J. Baek*, Direct Synthesis of Fluorinated Carbon Materials via a Solid-State Mechanochemical Reaction Between Graphite and PTFE, Advanced Functional Materials, 2023, published online. https://onlinelibrary.wiley.com/doi/10.1002/adfm.202306426
[122] G. Lu, W. Liu, Z. Yang, Y. Wang, W. Zheng, R. Deng, R. Wang*, L. Lu, C. Xu*, Superlithiophilic, Ultrastable, and Ionic-Conductive Interface Enabled Long Lifespan All-Solid-State Lirhium-Metal Batteries under High Mass Loading, Advanced Functional Materials, 2023, published online. https://onlinelibrary.wiley.com/doi/10.1002/adfm.202304407
[121] R. Deng, S. Tan, Z. Wang, R. Li, G. Lu, B. Qu, L. Tong, R. Wang, C. Xu*, G. Huang, J. Wang, A. Tang, X. Zhou*, and F. Pan*, Enabling Ultrafast Single Mg2+ Insertion Kinetics of Magnesium Ion Batteries via In-Situ Dynamic Catalysis and Re-Equilibration Effects, ACS Applied Materials & Interfaces, 2023, 15(23), 27984-27994. https://pubs.acs.org/doi/10.1021/acsami.3c03097
[120] Z. Li, X. Jiang, G. Lu, T. Deng, R. Wang*, J. Wei, W. Zheng, Z. Yang, D. Tang, Q. Zhao, X. Hu, C. Xu*, and X. Zhou*, Composite Lithium with High Ionic Conducting Li3Bi Alloy Enabled High-Performance Garnet-Type Solid-State Lithium Batteries, Chemical Engineering Journal, 2023, 465, 142895. https://www.sciencedirect.com/science/article/pii/S1385894723016261
[119] M. Li, G. Lu, W. Zheng, Q. Zhao, Z. Li, X. Jiang, Z. Yang, Z. Li, B. Qu*, and C. Xu*, Multifunctionalized Safe Separator Toward Practical Sodium-Metal Batteries with High-Performance under High Mass Loading, Advanced Functional Materials, 2023, 33(26), 2214759. https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202214759
[118] G. Lu, M. Li, P. Chen, W. Zheng, Z. Yang, R. Wang*, and C. Xu*, Built-in Superionic Conductive Phases Enabling Dendrite-free, Long Lifespan and High Specific Capacity of Composite Lithium for Stable Solid-State Lithium Batteries. Energy & Environmental Science, 2023, 16, 1049-1061. https://pubs.rsc.org/en/content/articlelanding/2023/ee/d2ee03709b
相关报道:
能源学人:https://mp.weixin.qq.com/s/wUe8i9ohd2z_ySyTxd7FSw
科学材料站:https://mp.weixin.qq.com/s/NgQCkF90NZnfENW8CBA3mQ
电化学电源:https://mp.weixin.qq.com/s/MI0I8wk25TPfG973A2sVtA
[117] X. Hu, R. Wang*, W. Feng, C. Xu*, Z. Wei*, Electrocatalytic Oxygen Evolution Activities of Metal Chalcogenides and Phosphides: Foundamentals, Origins, and Future Strategies. Journal of Energy Chemistry, 2023, 81, 167-191. . https://www.sciencedirect.com/science/article/pii/S2095495623000980
[116] W. Zheng, Z. Li, G. Lu, T. Yang, M. Li, C. Xu*, R. Wang*, 3D Flexible N-doped Carbonaceous Materials/PVDF-HFP Composite Frameworks for Quasi-solid-state 4.5 V Li-ion Capacitors, Chemical Engineering Journal, 2023, 451, 1, 138581. https://www.sciencedirect.com/science/article/pii/S1385894722040621.
化学与材料科学:https://mp.weixin.qq.com/s/aAOTj5MorM4NynfntgWByA
[115] P. Gao, P. Tang, Y. Mo, P. Xiao, W. Zhou, S. Chen, H. Dong, Z. Li*, C. Xu*, J. Liu*, Covelency competition induced selective bond breakage and surface reconstruction in manganese cobaltite towards enhanced electrochemical charge storage. Green Energy & Environment, 2023, published online. https://www.sciencedirect.com/science/article/pii/S2468025722001479
[114] X. Hu#, J. Fan#, R. Wang*, M. Li, S. Sun, C. Xu*, and F. Pan, Vacancies and interfaces engineering of core–shell heterostuctured NiCoP/NiO as trifunctional electrocatalysts for overall water splitting and zinc-air batteries. Green Energy & Environment, 2023, 8(2), 601-611. (# equally contribution) https://www.sciencedirect.com/science/article/pii/S2468025721001825
2022年
[113] F. Chen, H. Luo, M. Li, Y. Zheng, M. Zhou, H. Gui, Y. Xiang, C. Xu*, X. Li*, R. Wang*, High-Performance Aqueous Zinc-Ion Batteries Enabled by Binder-Free and Ultrathin V2O5-x@Graphene Aerogels with Intercalation Pseudocapacitance, ACS Applied Materials & Interfaces, 2022, https://pubs.acs.org/doi/10.1021/acsami.2c14153.
[112] J. Wei, Z. Yang*, G. Lu, X. Hu, Z Li, R. Wang*, C. Xu*, Enabling an Electron/Ion Dual-Conductive Composite Lithium Anode for Solid-State Lithium-Metal Batteries with Garnet Electrolyte, Energy Storage Materials, 2022, 53, 204-211. https://www.sciencedirect.com/science/article/pii/S2405829722004706.
电池未来:https://mp.weixin.qq.com/s/oG_EXpCFVGoJmHtTLKPd4A
电化学能源:https://mp.weixin.qq.com/s/WVSs1AqMLQF-E4aMluHPXg
[111] Z. Yang*, M. Li, G. Lu, Y. Wang, J. Wei, X. Hu, Z Li, P Li*, C. Xu*, High-Performance Composite Lithium Anodes Enabled by Electronic/Ionic Dual-Conductive Paths for Solid-State Li Metal Batteries, Small, 2022, 18(31), 2202911. https://onlinelibrary.wiley.com/doi/10.1002/smll.202202911
[110] J. Zhang, J. Wu, Z. Wang, Y. Mo, W. Zhou, Y. Peng, B. He, K. Xiao*, S. Chen, C. Xu*, J. Liu*, Stabilizing SEI by cyclic ethers toward enhanced K+ storage in graphite, Journal of Energy Chemistry, 2022, 71, 344-350. online. https://www.sciencedirect.com/science/article/pii/S2095495622001553
[109] J. Wei, Z. Yang*, Z. Li, G. Lu, C. Xu*, Constructing a Composite Lithium Anode for High-performance Solid-State Lithium-Metal Batteries via In-situ Alloying Reaction, Functional Materials Letters, 2022, 15(3), 2250015. https://www.worldscientific.com/doi/10.1142/S1793604722500151.
[108] T. Yang, W. Zheng, Z. Yang, C. Xu*, Rational struture design of FeCo-based materials as efficient electrodes for overall water-splitting, Functional Materials Letters, 2022, 15(3), 2251027. https://www.worldscientific.com/doi/10.1142/S1793604722510274
[107] D. Wu, X. Hu, Z. Yang*, T. Yang, J. Wei, G. Lu, Q. Zhao, Z. Li, X. Jiang, C. Xu*, In-situ Anchoring NiFe LDH on Fe/N Co-doped Carbon Nanofiber as Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries, Industrial & Engineering Chemistry Research, 2022, 61(22), 7523-7528. https://pubs.acs.org/doi/full/10.1021/acs.iecr.1c04694
[106] Q. Zhao, R. Wang*, X. Hu, Y. Wang, G. Lu, Z. Yang, Q. Liu, X. Yang, F. Pan, and C. Xu* , Functionalzied 12 μm Polyethylene Separator to Realize Dendrite-Free Lithium Deposition towards Stable Lithium-Metal Batteries, Advanced Science, 2022, 2102215. https://onlinelibrary.wiley.com/doi/10.1002/advs.202102215.
相关报道:
能源学人:https://mp.weixin.qq.com/s/SdLDdL8C44RmleqJle2ZbA
高分子科技:https://mp.weixin.qq.com/s/7QHBmQL0qW6q6pV8bI9n6g
[105] Q. Zhao, R. Wang*, J. Wen, X. Hu, Z. Li, M. Li, F. Pan, and C. Xu* , Separator Engineering toward Practical Li-S Batteries: Targeted Electrocatalytic Sulfur Conversion, Lithium Plating Regulation, and Thermal Tolerance, Nano Energy, 2022, 95, 106982. https://www.sciencedirect.com/science/article/pii/S2211285522000672
相关报道:
能源学人:https://mp.weixin.qq.com/s/SdLDdL8C44RmleqJle2ZbA
[104] X. Hu, T. Yang, Z. Yang, R. Wang, M. Li, G. Huang, B. Jiang, C. Xu*, and F. Pan, Engineering of Co3O4@Ni2P Heterostructure as Trifunctional Electrocatalysts for Rechargeable Zinc-Air Battery and Self-powered Overall Water Splitting. Journal of Materials Science and Technology, 2022, 115, 19-28. https://www.sciencedirect.com/science/article/pii/S1005030222000421
研之成理:https://mp.weixin.qq.com/s/WVSs1AqMLQF-E4aMluHPXg
[103] W. Zheng, Z. Li, G. Han, Q. Zhao, G. Lu, X. Hu, J. Sun, R. Wang* and C. Xu*, Nitrogen-doped activated porous carbon for 4.5 V lithium-ion capacitor with high energy and power density.Journal of Energy Storage, 2022, 47, 103675. https://www.sciencedirect.com/science/article/pii/S2352152X21013505
2021年
[102] Q. Zhao, R. Wang, Y. Zhang, G. Huang, B. Jiang, C. Xu* and F. Pan, The design of Co3S4@MXene heterostructure as sulfur host to promote the electrochemical kinetics for reversible magnesium-sulfur batteries.Journal of Magnesium and Alloys, 2021, 9, 78-89. https://www.sciencedirect.com/science/article/pii/S2213956720302310?via%3Dihub
[101] J. F. Wu, R. Zhang, Q. F. Fu, J. S. Zhang, X. Y. Zhou, P. Gao, C. Xu, J. Liu* and X. Guo*, Inorganic Solid Electrolytes for All-Solid-State Sodium Batteries: Fundamentals and Strategies for Battery Optimization.Advanced Functional Materials, 2021, 31. https://onlinelibrary.wiley.com/doi/10.1002/adfm.202008165
[100] J. Wen, Q. Zhao, X. Jiang, G. Ji, R. Wang*, G. Lu, J. Long, N. Hu* and C. Xu*, Graphene Oxide Enabled Flexible PEO-Based Solid Polymer Electrolyte for All-Solid-State Lithium Metal Battery. ACS Applied Energy Materials, 2021, 4, 3660-3669. https://pubs.acs.org/doi/10.1021/acsaem.1c00090
[99] J. Wen, J. Tang, H. Ning*, N. Hu*, Y. Zhu, Y. Gong, C. Xu, Q. Zhao, X. Jiang, X. Hu, L. Lei, D. Wu and T. Huang, Multifunctional Ionic Skin with Sensing, UV-Filtering, Water-Retaining, and Anti-Freezing Capabilities.Advanced Functional Materials, 2021, 31. https://onlinelibrary.wiley.com/doi/10.1002/adfm.202011176
[98] J. Wang, J. He, G. Omololu Odunmbaku, S. Zhao, Q. Gou, G. Han, C. Xu, T. Frauenheim and M. Li*, Regulating the electronic structure of ReS2 by Mo doping for electrocatalysis and lithium storage.Chemical Engineering Journal, 2021, 414. https://www.sciencedirect.com/science/article/pii/S1385894721004071?via%3Dihub
[97] P. Tang, P. Gao, X. Cui, Z. Chen, Q. Fu, Z. Wang, Y. Mo, H. Liu, C. Xu, J. Liu*, J. Yan and S. Passerini, Covalency Competition Induced Active Octahedral Sites in Spinel Cobaltites for Enhanced Pseudocapacitive Charge Storage.Advanced Energy Materials, 2021, DOI: 10.1002/aenm.202102053. https://onlinelibrary.wiley.com/doi/10.1002/aenm.202102053
[96] G. Luo, X. Hu, W. Liu, G. Lu, Q. Zhao, J. Wen, J. Liang*, G. Huang, B. Jiang, C. Xu* and F. Pan, Freestanding polypyrrole nanotube/reduced graphene oxide hybrid film as flexible scaffold for dendrite-free lithium metal anodes.Journal of Energy Chemistry, 2021, 58, 285-291. https://www.sciencedirect.com/science/article/pii/S2095495620306525?via%3Dihub
[95] G. Lu, Z. Dong, W. Liu, X. Jiang, Z. Yang, Q. Liu, X. Yang, D. Wu, Z. Li, Q. Zhao, X. Hu, C. Xu* and F. Pan, Universal lithiophilic interfacial layers towards dendrite-free lithium anodes for solid-state lithium-metal batteries. Science Bulletin, 2021, 66, 1746-1753. https://www.sciencedirect.com/science/article/pii/S2095927321003133?via%3Dihub
[94] W. Liu, G. Lu, Z. Yang, Q. Zhao, X. Hu, D. Wu, Z. Li, R. Wang*, S. Sun and C. Xu*, Engineering lithiophilic Ni-Al@LDH interlayers on a garnet-type electrolyte for solid-state lithium metal batteries.Chemical Communications, 2021, 57, 10214-10217. https://pubs.rsc.org/en/content/articlelanding/2021/CC/D1CC02932K
[93] X. Hu, G. Luo, X. Guo, Q. Zhao, R. Wang, G. Huang, B. Jiang, C. Xu* and F. Pan, Origin of the electrocatalytic oxygen evolution activity of nickel phosphides: in-situ electrochemical oxidation and Cr doping to achieve high performance.Science Bulletin, 2021, 66, 708-719. https://www.sciencedirect.com/science/article/pii/S2095927320307040?via%3Dihub
[92] X. Guo, X. Zheng, X. Hu, Q. Zhao, L. Li, P. Yu, C. Jing, Y. Zhang, G. Huang, B. Jiang, C. Xu* and F. Pan, Electrostatic adsorbing graphene quantum dot into nickel–based layered double hydroxides: Electron absorption/donor effects enhanced oxygen electrocatalytic activity.Nano Energy, 2021, 84. https://www.sciencedirect.com/science/article/pii/S2211285521001907?via%3Dihub
相关报道:
https://nyxr-home.com/44446.html
http://www.nanoer.net/showinfo-4-29004.html
[91] G. H. Dong, Y. Q. Mao, G. M. Yang, Y. Q. Li*, S. F. Song, C. H. Xu, P. Huang, N. Hu and S. Y. Fu*, High-Strength Poly(ethylene oxide) Composite Electrolyte Reinforced with Glass Fiber and Ceramic Electrolyte Simultaneously for Structural Energy Storage.ACS Applied Energy Materials, 2021, 4, 4038-4049. https://pubs.acs.org/doi/10.1021/acsaem.1c00402
2020年
[90] R. Zou, F. Liu, N. Hu, H. Ning, S. Wang, K. Huang, X. Jiang, C. Xu, S. Fu, Y. Li and C. Yan, Ultratough reduced graphene oxide composite films synergistically toughened and reinforced by polydopamine wrapped carbon nanotubes.Carbon, 2020, 159, 422-431. https://www.sciencedirect.com/science/article/pii/S0008622319312795?via%3Dihub
[89] R. Zou, F. Liu, N. Hu, H. Ning, X. Jiang, C. Xu, S. Fu, Y. Li and C. Yan, 1-Pyrenemethanol derived nanocrystal reinforced graphene films with high thermal conductivity and flexibility.Nanotechnology, 2020, 31. https://iopscience.iop.org/article/10.1088/1361-6528/ab51c5
[88] R. Zou, F. Liu, N. Hu, H. Ning, Y. Gong, S. Wang, K. Huang, X. Jiang, C. Xu, S. Fu, Y. Li and C. Yan, Graphene/Graphitized Polydopamine/Carbon Nanotube All-Carbon Ternary Composite Films with Improved Mechanical Properties and Through-Plane Thermal Conductivity.ACS Applied Materials and Interfaces, 2020, 12, 57391-57400. https://pubs.acs.org/doi/10.1021/acsami.0c18373
[87] L. Zhang, K. Yang, R. Chen, Y. Zhou, S. Chen, Y. Zheng, M. Li, C. Xu, X. Tang, Z. Zang and K. Sun, The Role of Mineral Acid Doping of PEDOT:PSS and Its Application in Organic Photovoltaics.Advanced Electronic Materials, 2020, 6. https://onlinelibrary.wiley.com/doi/10.1002/aelm.201900648
[86] J. Yuan, J. Zhu, R. Wang, Y. Deng, S. Zhang, C. Yao, Y. Li, X. Li and C. Xu, 3D few-layered MoS2/graphene hybrid aerogels on carbon fiber papers: A free-standing electrode for high-performance lithium/sodium-ion batteries.Chemical Engineering Journal, 2020, 398. https://www.sciencedirect.com/science/article/pii/S1385894720317204?via%3Dihub
[85] J. Wen, R. Zhang, Q. Zhao, W. Liu, G. Lu, X. Hu, J. Sun, R. Wang*, X. Jiang, N. Hu, J. Liu, X. Liu* and C. Xu*, Hydroxyapatite Nanowire-Reinforced Poly(ethylene oxide)-Based Polymer Solid Electrolyte for Application in High-Temperature Lithium Batteries.ACS Applied Materials and Interfaces, 2020, 12, 54637-54643. https://pubs.acs.org/doi/10.1021/acsami.0c15692
[84] W. Liu, F. Deng, S. Song, G. Ji*, N. Hu and C. Xu*, LLZO@EmimFSI@PEO derived hybrid solid electrolyte for high-energy lithium metal batteries.Materials Technology, 2020, 35, 618-624. https://www.tandfonline.com/doi/full/10.1080/10667857.2020.1726005
[83] L. Lin, H. Ning, S. Song*, C. Xu* and N. Hu*, Flexible electrochemical energy storage: The role of composite materials.Composites Science and Technology, 2020, 192. https://www.sciencedirect.com/science/article/pii/S0266353819333731?via%3Dihub
[82] Y. Li, R. Wang, W. Zheng, Q. Zhao, S. Sun, G. Ji*, S. Li, X. Fan and C. Xu*, Design of Nb2O5/graphene hybrid aerogel as polymer binder-free electrodes for lithium-ion capacitors.Materials Technology, 2020, 35, 625-634. https://www.tandfonline.com/doi/full/10.1080/10667857.2020.1734720
[81] X. Jiang, R. Wang*, N. Hu* and C. Xu*, Ultra-small MnCo2O4 nanocrystals decorated on nitrogen-enriched carbon nanofibers as oxygen cathode for Li-O2batteries.Functional Materials Letters, 2020, 13. https://www.worldscientific.com/doi/abs/10.1142/S1793604720510352
[80] X. Jiang, Z. Li, G. Lu, N. Hu*, G. Ji, W. Liu, X. Guo, D. Wu, X. Liu* and C. Xu*, Pores enriched CoNiO2 nanosheets on graphene hollow fibers for high performance supercapacitor-battery hybrid energy storage.Electrochimica Acta, 2020, 358. https://www.sciencedirect.com/science/article/pii/S0013468620312500?via%3Dihub
[79] X. Hu, G. Luo, Q. Zhao, D. Wu, T. Yang, J. Wen, R. Wang, C. Xu* and N. Hu, Ru single atoms on N‑doped carbon by spatial confinement and ionic substitution strategies for high-performance Li−O2 batteries.Journal of the American Chemical Society, 2020, 142, 16776-16786. https://pubs.acs.org/doi/10.1021/jacs.0c07317
相关报道:
http://www.cailiaoniu.com/209083.html
http://nanoer.net/showinfo-4-22718.html
2019年
[78] R. Zou, F. Liu, N. Hu, H. Ning, X. Jiang, C. Xu, S. Fu, Y. Li, X. Zhou and C. Yan, Carbonized polydopamine nanoparticle reinforced graphene films with superior thermal conductivity.Carbon, 2019, 149, 173-180.
[77] Q. Zhao, K. Zhao, G. Ji, X. Guo, M. Han, J. Wen, Z. Ren, S. Zhao, Z. Gao, R. Wang, M. Li, K. Sun, N. Hu and C. Xu*, High sulfur loading, rGO-linked and polymer binder-free cathodes based on rGO wrapped N,P-codoped mesoporous carbon as sulfur host for Li-S batteries.Chemical Engineering Journal, 2019, 361, 1043-1052.
[76] Q. Zhao, J. Wen, K. Zhao, G. Ji, R. Wang, X. Liang, N. Hu, L. Lu, J. Molenda, J. Qiu and C. Xu*, Deposition of thin δ-MnO 2 functional layers on carbon foam/sulfur composites for synergistically inhibiting polysulfides shuttling and increasing sulfur utilization.Electrochimica Acta, 2019, 305, 247-255.
[75] Y. Wang, S. Song, C. Xu, N. Hu, J. Molenda and L. Lu, Development of solid-state electrolytes for sodium-ion battery–A short review.Nano Materials Science, 2019, 1, 91-100.
[74] S. Wang, R. Wang*, Q. Zhao, L. Ren, J. Wen, J. Chang, X. Fang, N. Hu and C. Xu*, Freeze-drying induced self-assembly approach for scalable constructing MoS 2 /graphene hybrid aerogels for lithium-ion batteries.Journal of Colloid and Interface Science, 2019, 544, 37-45.
[73] R. Wang*, Q. Zhao, W. Zheng, Z. Ren, X. Hu, J. Li, L. Lu, N. Hu, J. Molenda, X. Liu* and C. Xu*, Achieving high energy density in a 4.5 v all nitrogen-doped graphene based lithium-ion capacitor.Journal of Materials Chemistry A, 2019, 7, 19909-19921.
[72] J. Wang, L. Zhang, K. Sun, J. He, Y. Zheng, C. Xu, Y. Zhang, Y. Chen and M. Li, Improving ionic/electronic conductivity of MoS2 Li-ion anode via manganese doping and structural optimization.Chemical Engineering Journal, 2019, 372, 665-672.
[71] Z. Ren, J. Wen, W. Liu, X. Jiang, Y. Dong, X. Guo, Q. Zhao, G. Ji, R. Wang, N. Hu, B. Qu* and C. Xu*, Rational Design of Layered SnS2 on Ultralight Graphene Fiber Fabrics as Binder-Free Anodes for Enhanced Practical Capacity of Sodium-Ion Batteries.Nano-Micro Letters, 2019, 11.
[70] Z. Li, H. Ning, L. Liu, C. Xu, Alamusi, Y. Li, Z. Zeng, F. Liu and N. Hu, Fabrication of bagel-like graphene aerogels and its application in pressure sensors.Smart Materials and Structures, 2019, 28.
[69] X. Li, Y. Liu, X. Zhang, C. Yao, R. Wang, C. Xu and J. Lei, Porous spheres of TiO2 (B)/anatase entwined by graphene nanoribbons for high Li+ rate performance.Electrochimica Acta, 2019, 298, 14-21.
[68] M. Kotobuki, H. Lei, Y. Chen, S. Song, C. Xu, N. Hu, J. Molenda and L. Lu, Preparation of thin solid electrolyte by hot-pressing and diamond wire slicing.RSC Advances, 2019, 9, 11670-11675.
[67] X. Jiang, Z. Ren, Y. Fu, Y. Liu, R. Zou, G. Ji, H. Ning, Y. Li, J. Wen, H. J. Qi, C. Xu*, S. Fu, J. Qiu and N. Hu*, Highly Compressible and Sensitive Pressure Sensor under Large Strain Based on 3D Porous Reduced Graphene Oxide Fiber Fabrics in Wide Compression Strains.ACS Applied Materials and Interfaces, 2019, 11, 37051-37059.
[66] X. Guo, X. Hu, D. Wu, C. Jing, W. Liu, Z. Ren, Q. Zhao, X. Jiang, C. Xu*, Y. Zhang* and N. Hu, Tuning the Bifunctional Oxygen Electrocatalytic Properties of Core-Shell Co3O4@NiFe LDH Catalysts for Zn-Air Batteries: Effects of Interfacial Cation Valences.ACS Applied Materials and Interfaces, 2019, 11, 21506-21514.
2018年及以前
[65] S. Wang, R. Wang*, J. Chang, N. Hu and C. Xu*, Self-supporting Co3O4/Graphene Hybrid Films as Binder-free Anode Materials for Lithium Ion Batteries.Scientific Reports, 2018, 8.
[64] R. Wang, Z. Chen, N. Hu, C. Xu*, Z. Shen and J. Liu*, Nanocarbon-Based Electrocatalysts for Rechargeable Aqueous Li/Zn-Air Batteries.ChemElectroChem, 2018, 5, 1745-1763.
[63] Z. Tian, S. Sun, X. Zhao, M. Yang and C. Xu, Phoenix tree leaves-derived biomass carbons for sodium-ion batteries.Functional Materials Letters, 2018, 11.
[62] Y. F. Liu, Y. F. Fu, Y. Q. Li, P. Huang, C. H. Xu, N. Hu and S. Y. Fu, Bio-inspired highly flexible dual-mode electronic cilia.Journal of Materials Chemistry B, 2018, 6, 896-902.
[61] J. Liu*, C. Xu*, Z. Chen, S. Ni and Z. X. Shen, Progress in aqueous rechargeable batteries.Green Energy and Environment, 2018, 3, 20-41.
[60] J. Liu, J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin and Z. X. Shen, Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design.Advanced Science, 2018, 5.
[59] X. Li, J. Long, Z. Su, R. Wang, C. Xu and J. Lei, Preparation and electrochemical performances of xLi2MnO3·(1-x) LiNi0.45Co0.2Mn0.35O2 (0 ≤ x ≤ 1) for high-power lithium-ion batteries.Ceramics International, 2018, 44, 17062-17068.
[58] H. Li, L. Lin, Q. Zhao, C. Xu, X. Peng and N. Hu, Rational design of unique graphene modified cobalt manganite hollow microcubes for supercapacitors.Applied Surface Science, 2018, 459, 16-22.
[57] M. Han, A. Jayakumar, Z. Li, Q. Zhao, J. Zhang, X. Jiang, X. Guo, R. Wang, C. Xu*, S. Song, J. M. Lee* and N. Hu*, Fabricating 3D Macroscopic Graphene-Based Architectures with Outstanding Flexibility by the Novel Liquid Drop/Colloid Flocculation Approach for Energy Storage Applications.ACS Applied Materials and Interfaces, 2018, 10, 21991-22001.
[56] X. Guo, T. Zheng, G. Ji, N. Hu, C. Xu* and Y. Zhang*, Core/shell design of efficient electrocatalysts based on NiCo2O4 nanowires and NiMn LDH nanosheets for rechargeable zinc-air batteries.Journal of Materials Chemistry A, 2018, 6, 10243-10252.
[55] X. Guo, T. Wang, T. X. Zheng, C. Xu, J. Zhang, Y. X. Zhang, X. Y. Liu and F. Dong, Quasi-parallel arrays with a 2D-on-2D structure for electrochemical supercapacitors.Journal of Materials Chemistry A, 2018, 6, 24717-24727.
[54] J. Zhang, H. Chen, X. Sun, X. Kang, Y. Zhang, C. Xu* and Y. Zhang*, High intercalation pseudocapacitance of free-standing T-Nb2O5 nanowires@carbon cloth hybrid supercapacitor electrodes.Journal of the Electrochemical Society, 2017, 164, A820-A825.
[53] C. Xu, M. Ouyang, L. Lu, X. Liu, S. Wang and X. Feng, 2017.
[52] R. Wang*, M. Han, Q. Zhao, Z. Ren, C. Xu*, N. Hu, H. Ning, S. Song and J. M. Lee, Construction of 3D CoO Quantum Dots/Graphene Hydrogels as Binder-Free Electrodes for Ultra-high Rate Energy Storage Applications.Electrochimica Acta, 2017, 243, 152-161.
[51] R. Wang*, M. Han, Q. Zhao, Z. Ren, X. Guo, C. Xu*, N. Hu and L. Lu, Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors.Scientific Reports, 2017, 7.
[50] S. Song, M. Kotobuki, F. Zheng, C. Xu, Y. Wang, W. D. Z. Li, N. Hu and L. Lu, Roles of Alkaline Earth Ions in Garnet-Type Superionic Conductors.ChemElectroChem, 2017, 4, 266-271.
[49] S. Song, M. Kotobuki, F. Zheng, C. Xu, S. V. Savilov, N. Hu, L. Lu, Y. Wang and W. D. Z. Li, A hybrid polymer/oxide/ionic-liquid solid electrolyte for Na-metal batteries.Journal of Materials Chemistry A, 2017, 5, 6424-6431.
[48] S. Song, M. Kotobuki, F. Zheng, C. Xu, N. Hu, L. Lu, Y. Wang and W. D. Li, Y-Doped Na2ZrO3: A Na-Rich Layered Oxide as a High-Capacity Cathode Material for Sodium-Ion Batteries.ACS Sustainable Chemistry and Engineering, 2017, 5, 4785-4792.
[47] S. Song, M. Kotobuki, F. Zheng, Q. Li, C. Xu, Y. Wang, W. D. Z. Li, N. Hu and L. Lu, Na-rich layered Na2Ru0.95Zr0.05O3 cathode material for Na-ion batteries.Journal of Power Sources, 2017, 342, 685-689.
[46] S. Song, M. Kotobuki, F. Zheng, Q. Li, C. Xu, Y. Wang, W. D. Z. Li, N. Hu and L. Lu, Communication-a composite polymer electrolyte for safer Mg batteries.Journal of the Electrochemical Society, 2017, 164, A741-A743.
[45] S. Song, M. Kotobuki, F. Zheng, Q. Li, C. Xu, Y. Wang, W. D. Z. Li, N. Hu and L. Lu, Al conductive hybrid solid polymer electrolyte.Solid State Ionics, 2017, 300, 165-168.
[44] S. Song, M. Kotobuki, Y. Chen, S. Manzhos, C. Xu, N. Hu and L. Lu, Na-rich layered Na2Ti1-xCrxO3-x/2 (x = 0, 0.06): Na-ion battery cathode materials with high capacity and long cycle life.Scientific Reports, 2017, 7.
[43] P. Luo, H. Zhang, L. Liu, Y. Zhang, J. Deng, C. Xu, N. Hu and Y. Wang, Targeted synthesis of unique nickel sulfide (NiS, NiS2) microarchitectures and the applications for the enhanced water splitting system.ACS Applied Materials and Interfaces, 2017, 9, 2500-2508.
[42] F. Liu, N. Hu, H. Ning, S. Atobe, C. Yan, Y. Liu, L. Wu, X. Liu, S. Fu, C. Xu, Y. Li, J. Zhang, Y. Wang and W. Li, Investigation on the interfacial mechanical properties of hybrid graphene-carbon nanotube/polymer nanocomposites.Carbon, 2017, 115, 694-700.
[41] S. Li, B. Qu*, H. Huang, P. Deng, C. Xu*, Q. Li and T. Wang, Controlled synthesis of iron sulfide coated by carbon layer to improve lithium and sodium storage.Electrochimica Acta, 2017, 247, 1080-1087.
[40] H. Zhang, H. M. Yu, C. H. Xu, M. H. Zhang, X. H. Pan and Y. F. Gao, A study of graphene oxidation using thermal analysis-mass spectrometry combined with pulse thermal analysis.Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2016, 32, 1634-1638.
[39] Y. Zhan, M. Lu, S. Yang, C. Xu, Z. Liu and J. Y. Lee, Activity of transition-metal (manganese, iron, cobalt, and nickel) phosphates for oxygen electrocatalysis in alkaline solution.ChemCatChem, 2016, 8, 372-379.
[38] C. Xu, M. Lu, B. Yan, Y. Zhan, P. Balaya, L. Lu and J. Y. Lee, Electronic Coupling of Cobalt Nanoparticles to Nitrogen-Doped Graphene for Oxygen Reduction and Evolution Reactions.ChemSusChem, 2016, 9, 3067-3073.
[37] S. Weng, H. Ning, N. Hu, C. Yan, T. Fu, X. Peng, S. Fu, J. Zhang, C. Xu, D. Sun, Y. Liu and L. Wu, Strengthening effects of twin interface in Cu/Ni multilayer thin films – A molecular dynamics study.Materials and Design, 2016, 111, 1-8.
[36] R. Wang#, C. Xu# and J. M. Lee, High performance asymmetric supercapacitors: New NiOOH nanosheet/graphene hydrogels and pure graphene hydrogels.Nano Energy, 2016, 19, 210-221. (# equally contribution)
[35] R. Wang, A. Jayakumar, C. Xu* and J. M. Lee*, Ni(OH)2 nanoflowers/graphene hydrogels: A new assembly for supercapacitors.ACS Sustainable Chemistry and Engineering, 2016, 4, 3736-3742.
[34] M. Lu, C. Xu, Y. Zhan and J. Y. Lee, Improving the Performance of Perovskite in Nonaqueous Oxygen Electrocatalysis.Chemistry - An Asian Journal, 2016, 11, 1210-1217.
[33] F. Liu, N. Hu, J. Zhang, S. Atobe, S. Weng, H. Ning, Y. Liu, L. Wu, Y. Zhao, F. Mo, S. Fu, C. Xu, Alamusi and W. Yuan, The interfacial mechanical properties of functionalized graphene-polymer nanocomposites.RSC Advances, 2016, 6, 66658-66664.
[32] F. Li, H. Chen, X. Y. Liu, S. J. Zhu, J. Q. Jia, C. H. Xu*, F. Dong, Z. Q. Wen and Y. X. Zhang*, Low-cost high-performance asymmetric supercapacitors based on Co2AlO4@MnO2 nanosheets and Fe3O4 nanoflakes.Journal of Materials Chemistry A, 2016, 4, 2096-2104.
[31] B. Hu, Y. Liu, N. Hu, L. Wu, H. Ning, J. Zhang, S. Fu, S. Tang, C. Xu, F. Liu, Alamusi and W. Yuan, Conductive PVDF-HFP/CNT composites for strain sensing.Functional Materials Letters, 2016, 9.
[30] Y. Zhan, G. Du, S. Yang, C. Xu, M. Lu, Z. Liu and J. Y. Lee, Development of Cobalt Hydroxide as a Bifunctional Catalyst for Oxygen Electrocatalysis in Alkaline Solution.ACS Applied Materials and Interfaces, 2015, 7, 12930-12936.
[29] X. Ma, H. Ning, N. Hu, Y. Liu, J. Zhang, C. Xu and L. Wu, Highly sensitive humidity sensors made from composites of HEC filled by carbon nanofillers.Materials Technology, 2015, 30, 134-139.
[28] M. Lu, J. Qu, Q. Yao, C. Xu, Y. Zhan, J. Xie and J. Y. Lee, Exploring metal nanoclusters for lithium-oxygen batteries.ACS Applied Materials and Interfaces, 2015, 7, 5488-5496.
[27] M. Lu, D. Chen, C. Xu, Y. Zhan and J. Y. Lee, Enhancing the performance of catalytic AuPt nanoparticles in nonaqueous lithium-oxygen batteries.Nanoscale, 2015, 7, 12906-12912.
[26] A. Jain, C. Xu, S. Jayaraman, R. Balasubramanian, J. Y. Lee and M. P. Srinivasan, Mesoporous activated carbons with enhanced porosity by optimal hydrothermal pre-treatment of biomass for supercapacitor applications.Microporous and Mesoporous Materials, 2015, 218, 55-61.
[25] Y. Zhan, C. Xu, M. Lu, Z. Liu and J. Y. Lee, Mn and Co co-substituted Fe3O4 nanoparticles on nitrogen-doped reduced graphene oxide for oxygen electrocatalysis in alkaline solution.Journal of Materials Chemistry A, 2014, 2, 16217-16223.
[24] C. Xu, M. Lu, Y. Zhan and J. Y. Lee, A bifunctional oxygen electrocatalyst from monodisperse MnCo 2O4 nanoparticles on nitrogen enriched carbon nanofibers.RSC Advances, 2014, 4, 25089-25092.
[23] R. Wang#, C. Xu#, J. Sun, Y. Liu, L. Gao, H. Yao and C. Lin, Heat-induced formation of porous and free-standing MoS2/GS hybrid electrodes for binder-free and ultralong-life lithium ion batteries.Nano Energy, 2014, 8, 183-195. (# equally contribution)
[22] R. Wang, C. Xu, J. Sun, L. Gao and H. Yao, Solvothermal-induced 3D macroscopic SnO2/nitrogen-doped graphene aerogels for high capacity and long-life lithium storage.ACS Applied Materials and Interfaces, 2014, 6, 3427-3436.
[21] R. Wang, C. Xu, J. Sun and L. Gao, Three-dimensional Fe2O3 nanocubes/nitrogen-doped graphene aerogels: Nucleation mechanism and lithium storage properties.Scientific Reports, 2014, 4.
[20] R. Wang, C. Xu, M. Du, J. Sun, L. Gao, P. Zhang, H. Yao and C. Lin, Solvothermal-induced self-assembly of Fe2O3/GS aerogels for high li-storage and excellent stability.Small, 2014, 10, 2260-2269.
[19] J. Qu, M. Lu, C. Xu, B. Ding, Y. Zhan, J. Yang and J. Y. Lee, Oxide-on-metal as an inverted design of oxygen electrocatalysts for non-aqueous Li-O2 batteries.Nanoscale, 2014, 6, 12324-12327.
[18] B. Qu, C. Ma, G. Ji, C. Xu, J. Xu, Y. S. Meng, T. Wang and J. Y. Lee, Layered SnS2-reduced graphene oxide composite - A high-capacity, high-rate, and long-cycle life sodium-ion battery anode material.Advanced Materials, 2014, 26, 3854-3859.
[17] Q. He, C. Xu, J. Luo, W. Wu and J. Shi, A novel mesoporous carbon@silicon-silica nanostructure for high-performance Li-ion battery anodes.Chemical Communications, 2014, 50, 13944-13947.
[16] C. Xu, B. Xu, Y. Gu, Z. Xiong, J. Sun and X. S. Zhao, Graphene-based electrodes for electrochemical energy storage.Energy and Environmental Science, 2013, 6, 1388-1414.
[15] R. Wang, C. Xu, J. Sun, Y. Liu, L. Gao and C. Lin, Free-standing and binder-free lithium-ion electrodes based on robust layered assembly of graphene and Co3O4 nanosheets.Nanoscale, 2013, 5, 6960-6967.
[14] R. Wang, C. Xu, J. Sun, L. Gao and C. Lin, Flexible free-standing hollow Fe3O4/graphene hybrid films for lithium-ion batteries.Journal of Materials Chemistry A, 2013, 1, 1794-1800.
[13] R. Wang, C. Xu, J. Sun, L. Gao, J. Jin and C. Lin, Controllable synthesis of nano-LiFePO4 on graphene using Fe 2O3 precursor for high performance lithium ion batteries.Materials Letters, 2013, 112, 207-210.
[12] R. Wang, Y. Wang, C. Xu, J. Sun and L. Gao, Facile one-step hydrazine-assisted solvothermal synthesis of nitrogen-doped reduced graphene oxide: Reduction effect and mechanisms.RSC Advances, 2013, 3, 1194-1200.
[11] M. Du, C. Xu, J. Sun and L. Gao, Synthesis of α-Fe2O3 nanoparticles from Fe(OH)3 sol and their composite with reduced graphene oxide for lithium ion batteries.Journal of Materials Chemistry A, 2013, 1, 7154-7158.
[10] C. Xu, J. Sun and L. Gao, Direct growth of monodisperse SnO 2 nanorods on graphene as high capacity anode materials for lithium ion batteries.Journal of Materials Chemistry, 2012, 22, 975-979.
[9] C. Xu, J. Sun and L. Gao, Controllable synthesis of monodisperse ultrathin SnO2 nanorods on nitrogen-doped graphene and its ultrahigh lithium storage properties.Nanoscale, 2012, 4, 5425-5430.
[8] M. Du, C. Xu, J. Sun and L. Gao, One step synthesis of Fe 2O 3/nitrogen-doped graphene composite as anode materials for lithium ion batteries.Electrochimica Acta, 2012, 80, 302-307.
[7] J. Chang, J. Sun, C. Xu, H. Xu and L. Gao, Template-free approach to synthesize hierarchical porous nickel cobalt oxides for supercapacitors.Nanoscale, 2012, 4, 6786-6791.
[6] C. Xu, J. Sun and L. Gao, Controllable synthesis of triangle taper-like cobalt hydroxide and cobalt oxide.CrystEngComm, 2011, 13, 1586-1590.
[5] C. Xu, J. Sun and L. Gao, Large scale synthesis of nickel oxide/multiwalled carbon nanotube composites by direct thermal decomposition and their lithium storage properties.Journal of Power Sources, 2011, 196, 5138-5142.
[4] C. Xu, J. Sun and L. Gao, Synthesis of novel hierarchical graphene/polypyrrole nanosheet composites and their superior electrochemical performance.Journal of Materials Chemistry, 2011, 21, 11253-11258.
[3] R. Wang, J. Sun, L. Gao, C. Xu, J. Zhang and Y. Liu, Effective post treatment for preparing highly conductive carbon nanotube/reduced graphite oxide hybrid films.Nanoscale, 2011, 3, 904-906.
[2] R. Wang, J. Sun, L. Gao, C. Xu and J. Zhang, Fibrous nanocomposites of carbon nanotubes and graphene-oxide with synergetic mechanical and actuative performance.Chemical Communications, 2011, 47, 8650-8652.
[1] C. Xu, J. Sun and L. Gao, Synthesis of multiwalled carbon nanotubes that are both filled and coated by SnO2 nanoparticles and their high performance in lithium-ion batteries.J. Phys. Chem. C, 2009, 113, 20509-20513.