提高锂离子(LIBs)电池工作电压是提升电池能量密度及功率密度的有效途径。然而,一般认为高电压(>4.3 V vs. Li/Li+)会加剧电解液分解,尤其碳酸亚乙酯(EC)在正极界面的氧化分解(即脱氢反应,亲核攻击或与正极释放的活性氧的反应)。无EC电解液体系可以明显提升与正极的兼容性,但往往会在负极发生严重的还原反应而导致阻抗剧增,尤其在快充或低温条件下析锂,造成电池短路,降低安全性。因此,设计与正/负极兼容的高压电解液极其关键。目前,大部分研究专注于正极CEI和负极SEI(solid electrolyte interphase, SEI)的形成对电池性能的影响, 鲜有研究聚焦电解液中Li+溶剂化结构及去溶剂化行为对正/负极及电池性能的影响 。尽管本文通讯作者明军提出过基于溶剂化结构的负极界面模型(vs. SEI)以阐述负极性能变化(ACS Energy Lett., 2018, 3, 335; ACS Energy Lett., 2019, 4, 1584; Nano Lett., 2020, 20, 3247; Adv. Mater., 2021, 33, 2005993)。但是,至今仍未有研究提出正极界面模型(vs. CEI)以阐述正极性能变化差异,尤其未曾考虑正、负极界面模型之间的相互作用关系对电池性能的影响。因此,深入理解正/负极表面去溶剂化行为及其相互作用关系,对研究如何设计高效的电解液具有重要的科学意义。
【工作介绍】 近日,中科院长春应化所明军、王立民研究员、韩国汉阳大学Yang-Kook Sun教授、与兰州大学张俊丽副研究员等合作,通过在正极和负极分别构建界面模型,系统地阐述了改变电解液的溶剂组分配比对Li+溶剂化结构及去溶剂化行为的影响,通过明确Li+,溶剂分子和阴离子在界面模型中的相互作用、兼容的重要性,以解释正/负极电化学性能变化的原因。该研究以“Interfacial Model Deciphering High-Voltage Electrolytes for High Energy Density, High Safety, and Fast-Charging Lithium-Ion Batteries”为题发表在国际著名期刊Advanced Materials上。中科院长春应化所邹业国为本文第一作者。
正、负极界面模型机理图
【内容表述】 1.高电压电解液特性
Figure 1. Characteristics of solvents and battery performance in different electrolytes. a) Linear carbonate (EMC), b) linear carboxylate (MA), and c) binary solvent-based (EMC/MA) electrolytes. Comparative electrochemical performance of different electrolytes in the graphite || NCM622 cell at the high voltage of 4.45 V. d) Voltage versus capacity profile and initial Coulombic efficiency (ICE) in the first cycle, e) rate performance, f) special fast charging/discharging feature, and g) long-term cycling at −5 °C under 0.5 C (C = 1.5 mA cm−2).
Figure 2. Comparison of power feature and interfacial impedance. Comparative ASI impedance and OCVs of the graphite || NCM622 cell by the HPPC used a) EMC, b) E/M73, and c) MA electrolytes. EIS impedance of d) graphite || NCM622 full cell and the symmetrical cell of e) NCM622 || NCM622 and f) graphite || graphite in different electrolytes after 200 cycles at 1 C.
Figure 3. Characterizations of NCM622 cathode in the graphite || NCM622 cell employing different electrolytes after 200 cycles. SEM images and illustration of the cycled NCM622 particles from a–a2) EMC, b–b2) E/M73, and c–c2) MA electrolytes. XPS spectra of d) O 1s and e) F 1s of the cycled NCM622 electrode. XRD patterns of f) (003) peak and HRTEM images of NCM622 surface layer from g) pristine, h–h2) EMC, i–i2) E/M73, and j–j3) MA electrolytes.
Figure 4. Characterizations of graphite anode in the graphite || NCM622 cell employing different electrolytes after 200 cycles. SEM images and illustration of the deposition of lithium metal on cycled graphite electrode in a,d) EMC, b,e) E/M73, and c,f) MA electrolytes. XPS spectra of g) Li 1s, h) O 1s, and i) F 1s of cycled graphite electrode.
Figure 5. Electrolyte analysis and solvation behaviors in different electrolytes. FTIR spectra of a) Li+–solvent, b) free–PF6− or CIPs, c) 7Li NMR spectra of Li+, and d) 19F NMR spectra of PF6− in different electrolytes. e) Coordination number of Li+–solvent and CIPs ratio obtained from the FTIR fitting results. Frequency of PF6 − contact with the Li+ in the f) EMC, g) MA, and h) E/M73 electrolytes. Binding energy of i) Li+–EMC and j) Li+–MA. k) Radial distribution function (RDF) of Li+–O and l) conductivity and transference number of Li+ ions in different electrolytes.
Figure 6. Simulated solvation behaviors in different solvents. a) Electrostatic potential mapping about electron distribution for different Li+–solvent–PF6−pair. b) Desolvation energies between Li+–solvents–PF6− obtained by DFT calculations (right inset is the simulation snapshot of Buried volume [%VBur] calculations for PF6−). c) LUMO and HOMO energy of the solvent, solvent–PF6−, Li+–solvent, and Li+–solvent–PF6− pair (insets are molecularorbital simulation snapshots of LUMO and HOMO).
Figure 7. Interfacial behavior and simulation from the bulk electrolyte to electrode interphase. a–c) Cathode interfacial model and a′–c′) simulated electrolyte behavior on the cathode/electrolyte interphase, d–f) anode interfacial model, and d′–f′) simulated electrolyte behavior on the anode/electrolyte interphase in the EMC, MA, and E/M73 electrolytes, respectively.
为了更好地理解电解液的溶剂化结构,研究者采用 Li+溶剂化结构简式(即Li+ [solvent]x[anion])来描述电解液组成,如E/M73电解液可表示为Li+[MA]3.14[EMC]5.68[PF6-]。基于Li+溶剂化结构单元脱溶剂化过程,构建了不同的界面模型用以讨论电解液的界面行为与电极性能的联系(图7)。首先,在EMC电解液中,PF6-更容易出现在Li+-EMC周围,使得Li+与EMC-PF6-之间存在强大的相互作用力,会削弱PF6-与充电正极之间的库伦相互作用力(图7a),因此,EMC-PF6-很难靠近正极表面,从而难以发生氧化反应。此外,自由的溶剂分子会与从正极脱出的Li+配位形成Li+-EMC,进一步提高了EMC的氧化稳定性,与此同时,PF6-受体相电解液中的CIPs 的限制,很难移动到新形成的Li+-EMC周围。最终EMC在高压正极界面的氧化分解被抑制。而在MA电解液中情况则完全相反,大量的不受束缚的自由PF6-会出现在正极表面,这会加剧MA的氧化分解(图7c)。对于E/M73电解液来说,PF6-的出现频率介于上述二者之间(f1'>f3'>f2')(图7b),EMC与MA共同参与第一溶剂化层的形成,使得PF6-处于合适的位置,提高了E/M73电解液在高电压下与正极的兼容性。最后,利用计算模拟对上述讨论进行了进一步验证(图7a'-c')。【结论】
在本工作中,研究者在不使用任何添加剂的条件下,利用共溶剂策略设计出了一款新型的高电压电解液。该电解液不但能够明显提升全电池的快充能力,而且还具备良好的长循环稳定性,高功率和抑制负极析锂的特性。 更重要的是,研究者分别在正、负极提出了与Li+溶剂化结构相关的界面模型,并且提出其兼容性的重要性,该模型能够在分子层面解释Li+-solvet-PF 6- 在正、负极界面的去溶剂化行为与相互作用对电极及电池性能的影响。 研究者提出的正/负极界面模型为理解电解液中溶剂化结构与电极性能的关系提供了一个新的视角,对指导如何设计电解液具有重要的科学意义。