2024:
94. Wang, KX., Yuan, RD., He, YT. et al. Biological ion channel inspired interfacial protection layer for high-performance zinc-ion batteries. Rare Met. (2024).(IF=9.599)
https://doi.org/10.1007/s12598-024-02966-5
93. C. Wang#, Y. Li#, S. Zhang#, T. Sang, Y. Lei, R. Liu, F. Wan, Y.Chen, W.Chen, Y. Zheng, S.Sun, Organic Cation-supported Layered Vanadate Cathode for High-performance Aqueous Zinc-ion Batteries. Carbon Energy, 2024, DOI:10.1002/cey2.647 (IF=20.500)
https://doi.org/10.1002/cey2.647
92. Y. Li, K. Wu, H. Luo, M. Li, L. Wang, K. Sun, Y. Zheng, Doped VS2 as a high-performance electrode material for rechargeable Mg-ion batteries, Phys. Rev. Appl,2024,21,024038 (IF=4.600)
https://doi.org/10.1103/PhysRevApplied.21.024038
91. Li, Y.; Jiang, J.; Li, X.; Li, M.; Zheng, Y.; Sun, K., MXenes with functional N terminal group offer a covalent bond storage mechanism for anions. Physical Review B 2024, 110, 155401.(IF=3.200)
https://doi.org/10.1103/PhysRevB.110.155401
90. Mao, Y.; Li, J.; Yang, X.; Tao, K.; Sun, K.; Chen, S.; Zheng, Y., Molecular dynamics simulation of thermal properties in composite phase change materials based on functionalized graphene and polyethylene glycol. Journal of Energy Storage 2024, 94, 112104.(IF=8.901)
https://doi.org/10.1016/j.est.2024.112104
89. Wu, Z.; Sang, S.; Zheng, J.; Gao, Q.; Huang, B.; Li, F.; Sun, K.; Chen, S., Crystallization Kinetics of Hybrid Perovskite Solar Cells. Angew. Chem. Int. Ed. 2024, 63, e202319170.(IF=16.100)
https://doi.org/10.1002/anie.202319170
88. Xia, T.; Ouyang, Y.; Wang, C.; Pan, Y.; Gao, Q.; Chen, X.; Zhang, B.; Chen, K.; He, Z.; Yuan, X.; Shen, C.; Guo, B.; Deng, Y.; Chen, S.; Jiang, T.; Sun, K., SnO2 Interacted with Sodium Thiosulfate for Perovskite Solar Cells over 25% Efficiency. J. Phys. Chem. Lett. 2024, 15, 5854-5861.(IF=4.800)
https://doi.org/10.1021/acs.jpclett.4c01022
87. Wang, J.; Chen, Z.; Yuan, R.; Luo, J.; Zhang, B.; Ji, K.; Li, M.; Xiao, J.; Sun, K., Innovative dual-mode device integrating capacitive desalination and solar vapor generation for high-efficiency seawater desalination. Journal of Energy Chemistry 2024.(IF=13.999)
https://doi.org/10.1016/j.jechem.2024.08.026
86. Fang, W.; Luo, H.; Mwakitawa, I. M.; Yuan, F.; Lin, X.; Wang, Y.; Yang, H.; Shumilova, T.; Hu, L.; Zheng, Y.; Li, C.; Ouyang, J.; Sun, K., Boosting Thermogalvanic Cell Performance through Synergistic Redox and Thermogalvanic Corrosion. ChemSusChem 2024, n/a, e202401749.(IF=7.500)
https://doi.org/10.1002/cssc.202401749
85. X. Lin, Z. Ou, X. Wang, C. Wang, Y. Ouyang, I. M. Mwakitawa, F. Li, R. Chen, Y. Yue, J. Tang, W. Fang, S. Chen, B. Guo, J. Ouyang, T. Shumilova, Y. Zhou, L. Wang, C. Zhang, K. Sun. Self-adhesive and biocompatible dry electrodes with conformal contact to skin for epidermal electrophysiology. Interdiscip. Mater. 2024; 3(5): 775-790.(IF=24.500)
https://doi.org/10.1002/idm2.12198
相关报道:重庆大学、新加坡国立大学&俄罗斯科学院等交叉研究成果IM:用于表皮生理电信号检测且可与皮肤保形接触的自粘附生物相容性干电极材料
84. Ouedraogo, N. A. N.; Ouyang, Y.; Guo, B.; Xiao, Z.; Zuo, C.; Chen, K.; He, Z.; Odunmbaku, G. O.; et al., Printing Perovskite Solar Cells in Ambient Air: A Review, Advanced Energy Materials, 2024, 14 (29), 2401463.(IF=24.399)
https://doi.org/10.1002/aenm.202401463
83. Ouyang, Y.; Ou, Z.; Mwakitawa, I. M.; Xia, T.; Pan, Y.; Wang, C.; Gao, Q.; Zhang, B.; Chen, K.; He, Z.; et al. Orientation Manipulation and Defect Passivation for Perovskite Solar Cells by a Natural Compound. Small 2024, 2401834. (IF=13.300)
https://doi.org/10.1002/smll.202401834
82. Ouedraogo, N. A. N.; Odunmbaku, G. O.; Ouyang, Y.; Xiong, X.; Guo, B.; Chen, S.; Lu, S.; Sun, K., Eco-friendly processing of perovskite solar cells in ambient air. Renewable and Sustainable Energy Reviews 2024, 192, 114161.(IF=15.900)
https://doi.org/10.1016/j.rser.2023.114161
81. Li, Y.; Wu, K.; Luo, H.; Li, M.; Wang, L.; Sun, K.; Zheng, Y., Doped VS2 as a high-performance electrode material for rechargeable Mg-ion batteries. Physical Review Applied 2024, 21 (2), 024038.(IF=4.600)
https://doi.org/10.1103/PhysRevApplied.21.024038
80. Li, Y.; Ma, Z.; Hou, S.; Liu, Q.; Yan, G.; Li, X.; Yu, T.; Du, Z.; Yang, J.; Chen, Y.; You, W.; Yang, Q.; Xiang, Y.; Tang, S.; Yue, X.; Zhang, M.; Zhang, W.; Yu, J.; Huang, Y.; Xie, J.; Tang, C.; Mai, Y.; Sun, K., Recent progress in hydrogen: From solar to solar cell. Journal of Materials Science & Technology 2024, 176, 236-257.(IF=10.900)
https://doi.org/10.1016/j.jmst.2023.08.030
79. Hu, L.; Zheng, H.; Yang, S.; Liu, X.; Du, Y.-M.; Li, J.; Wang, H.; Sun, K., Thermal-to-Electrical Conversion Based on Salinity Gradient Driven by Evaporation. Small 2024, 2311129. https://doi.org/10.1002/smll.202311129(IF=13.300)
78. Du, Z.; Ma, Z.; Liu, Q.; Huang, Z.; Yu, T.; Li, Y.; Hou, S.; Chen, Y.; Yang, Q.; You, W.; Yang, J.; Li, G.; Xu, J.; Du, H.; Li, Y.; Liu, Z.; Huang, Y.; Yu, J.; Sun, K.; Mai, Y.; Su, R., Defect passivation with bromine template for efficient perovskite solar cells. Materials Science in Semiconductor Processing 2024, 173, 108138.(IF=4.010)
https://doi.org/10.1016/j.mssp.2024.108138
77. Chen, Y.; Ma, Z.; Yu, T.; Du, Z.; You, W.; Yang, J.; Hou, S.; Li, Y.; Liu, Q.; Li, W.; Zhang, Q.; Du, H.; Li, Y.; Gou, F.; Yang, Q.; Li, G.; Huang, Y.; Sun, K.; Mai, Y.; Long, W., Interfacial passivation with 2-aminopyridine for effective perovskite solar cells. Materials Science in Semiconductor Processing 2024, 173, 108114.(IF=4.010)
http://dx.doi.org/10.1016/j.mssp.2024.108114
76. Li, C. a.; Shan, C.; Luo, D.; Gu, X.; Le, Q.; Kyaw, A. K. K.; Dong, Z.; Sun, K.; Ouyang, J., Great Enhancement in the Seebeck Coefficient of PEDOT:PSS by Polaron Level Splitting via π–π Overlapping with Nonpolar Small Aromatic Molecules. Advanced Functional Materials 2024, 34 (9), 2311578.(IF=19.000)
https://doi.org/10.1002/adfm.202311578
75. Luo, H.; Jiang, J.; Arramel; Li, M.; Sun, K.; Zheng, Y., Working mechanism of MXene as the anode protection layer of aqueous zinc-ion batteries. Journal of Colloid and Interface Science 2024, 654, 289-299.(IF=9.900)
https://doi.org/10.1016/j.jcis.2023.10.029
74. Guo, B.; Chen, X.; Luo, H.; Odunmbaku, G. O.; Jiang, T.; Ouedraogo, N. A. N.; Huang, Z.; Gao, Q.; Zhang, B.; Ouyang, Y.; Pan, Y.; Xia, T.; Wang, C.; Zahid, K.; Li, C.; Chen, S.; Zheng, Y.; Ma, Z.; Sun, K., Green Solvent Accelerates Spiro-OMeTAD Oxidation for Efficient Perovskite Solar Cells. Solar RRL 2024, 8 (3), 2300934.(IF=7.900)
https://doi.org/10.1002/solr.202300934
2023:
73. Liao, Q.; Sun, K.; Wang, J., A new platform for clean energy and sustainable environment in the new era of decarbonization. DeCarbon 2023, 1, 100001.
https://doi.org/10.1016/j.decarb.2023.100001
72. Ju, D.; Zhou, M.; Ran, P.; Li, H.; Yang, Y. M.; Jiang, T., Melt-Processable and Thermally Driven Self-Healing Luminescent Cu(I) Hybrid Metal Halides. ACS Materials Letters 2023, 5 (11), 2978-2986.(IF=11.400)
https://doi.org/10.1021/acsmaterialslett.3c00701
71. Ju, D.; Zhou, M.; Liu, Z.; Ran, P.; Dong, Z.; Hou, S.; Li, H.; Xiao, W.; Xu, X.; Li, H.; Yang, Y.; Jiang, T., Excitation-Selective and Double-Emissive Lead-Free Binary Hybrid Metal Halides for White Light-Emitting Diode and X-Ray Scintillation. Small 2023, 2305083.(IF=13.300)
https://doi.org/10.1002/smll.202305083
70. Liu, Q.; Ran, P.; Chen, W.; Shi, N.; Zhang, W.; Qiao, X.; Jiang, T.; Yang, Y.; Ren, J.; Wang, Z.; Qian, G.; Fan, X., Bright Transparent Scintillators with High Fraction BaCl2: Eu2+ Nanocrystals Precipitation: An Ionic-Covalent Hybrid Network Strategy toward Superior X-Ray Imaging Glass-Ceramics. Advanced Science 2023, 10 (34), 2304889.(IF=15.100)
https://doi.org/10.1002/advs.202304889
69. 杨可; 肖泽云; 陆仕荣; 孙宽, 分子堆叠和器件性能:基于苯并二噻吩及其衍生物的高效小分子给体研究进展. 高等学校化学学报 2023, 44 (9), 13-36.DOI:10.7503/cjcu20230123.
68. Zhang, L.; Li, H.; Zhang, K.; Li, W.; Zuo, C.; Odunmbaku, G. O.; Chen, J.; Chen, C.; Zhang, L.; Li, R.; Gao, Y.; Xu, B.; Chen, J.; Liu, Y.; Wang, Y.; Song, Y.; Tang, J.; Gao, F.; Zhao, Q.; Peng, Y.; Liu, M.; Tao, L.; Li, Y.; Fang, Z.; Cheng, M.; Sun, K.; Zhao, D.; Zhao, Y.; Yang, S.; Yi, C.; Ding, L., Major strategies for improving the performance of perovskite solar cells. iEnergy 2023, 2 (3), 172-199.
http://dx.doi.org/10.23919/IEN.2023.0026
67. Guo, B.; Li, W.; Guo, X.; Li, G.; Meng, X.; Ma, W.; Chen, S.; Zhang, M.; Sun, K., Fine-Tuned Active Layer Morphology for Bulk Heterojunction Organic Solar Cells with Indene-C60 Bisadduct as a Third Component. ACS Applied Materials & Interfaces 2023, 15 (50), 58693-58699.(IF=9.500)
https://pubs.acs.org/doi/10.1021/acsami.3c13823
66. Huang, Z.; Ma, Z.; Deng, C.; Yu, T.; Li, G.; Du, Z.; You, W.; Yang, J.; Chen, Y.; Li, Y.; Hou, S.; Yang, Q.; Zhang, Q.; Du, H.; Li, Y.; Shu, H.; Liu, Q.; Peng, C.; Huang, Y.; Yu, J.; Lin, Y.; Sun, K.; Long, W., Aging-Resistant Precursor with Ultrawide Annealing Window for 24.08% Perovskite Solar Cells. Advanced Energy Materials 2023, 2302769.(IF=26.700)
https://doi.org/10.1002/aenm.202302769
相关报道:
西南石油大学马柱&林元华&重庆大学孙宽最新AEM:具有超宽退火窗口的抗老化前驱体用于24.08%钙钛矿太阳能电池(钙钛矿太阳能电池)
65. Chen, X.; Guo, B.; Zhang, Z.; Zhang, B.; Zu, X.; Ouedraogo, N. A. N.; Oh, J.; Cho, Y.; Odunmbaku, G. O.; Chen, K.; Zhou, Y.; Chen, S.; Yang, C.; Du, J.; Sun, K., Binary hole transport layer enables stable perovskite solar cells with PCE exceeding 24%. DeCarbon 2023, 1, 100004.
https://www.sciencedirect.com/science/article/pii/S2949881323000045
相关报道:
重庆大学孙宽、郭冰/国科大杭高院杜鹃、张泽宇《DeCarbon》:二元混合空穴传输层实现超24% 效率的稳定钙钛矿太阳能电池
64. He, Y.; Li, S.; Chen, R.; Liu, X.; Odunmbaku, G. O.; Fang, W.; Lin, X.; Ou, Z.; Gou, Q.; Wang, J.; Ouedraogo, N. A. N.; Li, J.; Li, M.; Li, C.; Zheng, Y.; Chen, S.; Zhou, Y.; Sun, K., Ion–Electron Coupling Enables Ionic Thermoelectric Material with New Operation Mode and High Energy Density. Nano-Micro Letters 2023, 15 (1), 101.(IF=23.655)
https://link.springer.com/article/10.1007/s40820-023-01077-7
相关报道:
重庆大学孙宽课题组NML:离子电子耦合使离子热电材料具有新的工作模式和高能量密度(高分子科学前沿)
63. Zhou, Y.; Yao, C.; Lin, X.; Oh, J.; Tian, J.; Yang, W.; He, Y.; Ma, Y.; Yang, K.; Ai, B.; Sun, K.; Fu, Z.; Lu, Y.; Li, F.; Yang, C.; Chen, S., Ion Exchange Induced Efficient N-Type Thermoelectrics in Solid-State. Advanced Functional Materials 2023, 2214563. https://doi.org/10.1002/adfm.202214563(自然指数期刊,IF=19.925)
相关报道:
重庆大学陈珊珊、孙宽/复旦大学李峰《AFM》:高性能n型离子热电(高分子科学前沿)
62. Zhang, B.; Oh, J.; Sun, Z.; Cho, Y.; Jeong, S.; Chen, X.; Sun, K.; Li, F.; Yang, C.; Chen, S., Buried Guanidinium Passivator with Favorable Binding Energy for Perovskite Solar Cells. ACS Energy Letters 2023, 8 (4), 1848-1856.(IF=23.990)
https://pubs.acs.org/doi/10.1021/acsenergylett.2c02881
相关报道:
重庆大学陈珊珊&复旦大学李峰最新ACS Energy Letters:具有良好结合能的埋底胍钝化剂用于钙钛矿太阳能电池(钙钛矿太阳能电池)
61. Yuan, X.; Li, R.; Xiong, Z.; Li, P.; Odunmbaku, G. O.; Sun, K.; Deng, Y.; Chen, S., Synergistic Crystallization Modulation and Defects passivation via Additive Engineering Stabilize Perovskite Films for Efficient Solar Cells. Advanced Functional Materials 2023, 2215096. https://doi.org/10.1002/adfm.202215096(自然指数期刊,IF=19.925)
https://onlinelibrary.wiley.com/doi/10.1002/adfm.202215096
相关报道:
重庆大学孙宽&邓业浩&陈世建最新AFM:通过添加剂工程协同结晶调控和缺陷钝化稳定钙钛矿薄膜制备高效率钙钛矿太阳能电池(钙钛矿太阳能电池)
60. Zhang, C.; Zhang, M.; Zhou, Q.; Chen, S.; Kim, S.; Yao, J.; Zhang, Z.; Bai, Y.; Chen, Q.; Chang, B.; Fu, H.; Xue, L.; Wang, H.; Yang, C.; Zhang, Z.-G., Diffusion-Limited Accepter Alloy Enables Highly Efficient and Stable Organic Solar Cells. Advanced Functional Materials 2023, 2214392.(自然指数期刊,IF=19.925)
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202214392
59. Li, Z.; Xu, Z. a.; Chen, S.; Yao, J.; Fu, H.; Zhang, M.; Bai, Y.; Wang, H.; Liu, Z.; Zhang, Z.-G., Asymmetric nonfullerene acceptors with isomeric trifluorobenzene-substitution for high-performance organic solar cells. Journal of Materials Chemistry A 2023, 11 (9), 4539-4546.(IF=14.510)
https://pubs.rsc.org/en/content/articlelanding/2023/ta/d2ta09858j
58. Luo, H.; Deng, J.; Gou, Q.; Odunmbaku, O.; Sun, K.; Xiao, J.; Li, M.; Zheng, Y., Accelerated discovery of novel high-performance zinc-ion battery cathode materials by combining high-throughput screening and experiments. Chinese Chemical Letters 2023, 34 (8), 107885.(IF=9.100)
https://doi.org/10.1016/j.cclet.2022.107885
57. Yue, X.; Wang, C.; Zhang, B.; Zhang, Z.; Xiong, Z.; Zu, X.; Liu, Z.; Hu, Z.; Odunmbaku, G. O.; Zheng, Y.; Sun, K.; Du, J., Real-time observation of the buildup of polaron in α-FAPbI3. Nature Communications 2023, 14 (1), 917.(Nature子刊, IF=17.694)
https://www.nature.com/articles/s41467-023-36652-4
相关报道:
中科院上海光学精密机械研究所张泽宇&杜鹃&重庆大学孙宽NC:实时观察α-FAPbI3中极化子的积累(钙钛矿太阳能电池)
科研动态 | 杭高院物光学院冷雨欣工作室研究出直接探测钙钛矿中极化子的新方法(国科大杭州高等研究院)
2022:
56. Wang, C.; Zhang, Z.; Xiong, Z.; Yue, X.; Zhang, B.; Jia, T.; Liu, Z.; Du, J.; Leng, Y.; Sun, K.; Li, R., Polaron mobility modulation by bandgap engineering in black phase α-FAPbI3. Journal of Energy Chemistry 2023, 76, 175-180.(IF=13.599)
https://www.sciencedirect.com/science/article/pii/S2095495622004594
相关报道:
黑色相有机-无机杂化钙钛矿α-FAPbI3薄膜中带隙工程调制极化子迁移率研究(JEnergyChem)
55. Zhou, Y.; Dong, Z.; He, Y.; Zhu, W.; Yuan, Y.; Zeng, H.; Li, C.; Chen, S.; Sun, K., Multi-ionic Hydrogel with outstanding heat-to-electrical performance for low-grade heat harvesting. Chemistry – An Asian Journal 2022, e202200850.(IF=4.839)
https://onlinelibrary.wiley.com/doi/10.1002/asia.202200850
54. Ouedraogo, N. A. N.; Odunmbaku, G. O.; Guo, B.; Chen, S.; Lin, X.; Shumilova, T.; Sun, K., Oxidation of Spiro-OMeTAD in High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces 2022, 14 (30), 34303-3432.(IF=10.383)
https://pubs.acs.org/doi/10.1021/acsami.2c06163
53. Chen, R.; He, H.; Hong, X. Z.; Le, Q.; Sun, K.; Ouyang, J., PEDOT:PSS as Stretchable Conductors with Good Wettability on the Substrate through the Simultaneous Plasticization and Secondary Doping with a Cationic or Anionic Surfactant. Macromolecules 2022, 55 (12), 4967-4978. (自然指数期刊,IF=6.057)
https://pubs.acs.org/doi/full/10.1021/acs.macromol.2c00592
52. Gou, Q.; Luo, H.; Zheng, Y.; Zhang, Q.; Li, C.; Wang, J.; Odunmbaku, O.; Zheng, J.; Xue, J.; Sun, K.; Li, M., Construction of Bio-inspired Film with Engineered Hydrophobicity to Boost Interfacial Reaction Kinetics of Aqueous Zinc–Ion Batteries. Small 2022, 18 (24), 2201732.(IF=15.154)
https://onlinelibrary.wiley.com/doi/10.1002/smll.202201732
51. He, Y.; Zhang, Q.; Cheng, H.; Liu, Y.; Shu, Y.; Geng, Y.; Zheng, Y.; Qin, B.; Zhou, Y.; Chen, S.; Li, J.; Li, M.;Odunmbaku, G. O.; Li, C.; Shumilova, T.; Ouyang, J.; Sun, K., Role of Ions in Hydrogels with an Ionic Seebeck Coefficient of 52.9 mV K–1. The Journal of Physical Chemistry Letters 2022, 4621-4627.(自然指数期刊,封面论文,IF=6.888)
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c00845#
相关报道:
重大孙宽/新国大欧阳建勇JPCL封面论文:离子物理属性对离子型热电材料塞贝克系数的影响规律(研之成理)
《JPCL》新加坡国立欧阳建勇、重大孙宽:离子塞贝克系数为 52.9 mV K-1 的水凝胶中离子的作用(水凝胶)
50. Lan, L.; Li, F.; Li, W.; Chen, R.; Xiong, Z.; He, Y.; Ouedraogo, N. A. N.; Ai, B.; Tao, L.; Sun, K.; Chen, S., Highly Skin-Compliant Polymeric Electrodes with Synergistically Boosted Conductivity toward Wearable Health Monitoring. ACS Applied Materials & Interfaces 2022, 14 (17), 20113-20121.(IF=10.383)
https://pubs.acs.org/doi/full/10.1021/acsami.2c03596
相关报道:
重庆大学柔性可再生能源材料与器件团队 ACS AMI:双网络调控的高质量可拉伸聚合物电极在可穿戴健康监测方面取得进展
49. Liu, Y.; Zhang, Q.; Odunmbaku, G. O.; He, Y.; Zheng, Y.; Chen, S.; Zhou, Y.; Li, J.; Li, M.; Sun, K., Solvent effect on the Seebeck coefficient of Fe2+/Fe3+ hydrogel thermogalvanic cells. Journal of Materials Chemistry A 2022, 10 (37), 19690-19698.(IF=14.510)
https://pubs.rsc.org/en/content/articlelanding/2022/TA/D1TA10508F
相关报道:
重庆大学孙宽课题组JMCA:发现Fe2+/3+热电池中塞贝克的溶剂效应
48. Odunmbaku, G. O.; Chen, S.; Guo, B.; Zhou, Y.; Ouedraogo, N. A. N.; Zheng, Y.; Li, J.; Li, M.; Sun, K., Recombination Pathways in Perovskite Solar Cells. Advanced Materials Interfaces 2022, 9 (12), 2102137.(IF=6.147)
https://onlinelibrary.wiley.com/doi/10.1002/admi.202102137
47. Qin, J.; Yang, Q.; Oh, J.; Chen, S.; Odunmbaku, G. O.; Ouedraogo, N. A. N.; Yang, C.; Sun, K.; Lu, S., Volatile Solid Additive-Assisted Sequential Deposition Enables 18.42% Efficiency in Organic Solar Cells. Advanced Science 2022, 9 (9), 2105347.(IF=16.806)
https://onlinelibrary.wiley.com/doi/10.1002/advs.202105347
相关报道:
重庆大学孙宽课题组和中科院绿色智能技术研究院陆仕荣课题组AS:可挥发固体添加剂辅助连续沉积法制备效率18.42%有机太阳能电池
46. Shu, Y.; Xiong, Z.; Liu, Y.; Zhou, Y.; Li, M.; Zheng, Y.; Chen, S.; Sun, K., Thermoelectric Properties of Carbon Nanomaterials/Polymer Composites. In Flexible Thermoelectric Polymers and Systems 2022,163-207.(Book chapter)
https://onlinelibrary.wiley.com/doi/10.1002/9781119550723.ch6
45. Zhang, Q.; Zheng, Y. J.; Sun, W.; Ou, Z.; Odunmbaku, O.; Li, M.; Chen, S.; Zhou, Y.; Li, J.; Qin, B.; Sun, K., High-Efficiency Non-Fullerene Acceptors Developed by Machine Learning and Quantum Chemistry. Advanced Science 2022, 9 (6), 2104742.(IF=16.806)
https://onlinelibrary.wiley.com/doi/10.1002/advs.202104742
相关报道:
重庆大学La FREMD课题组Adv. Sci.:机器学习及量子化学辅助开发高效非富勒烯受体材料(AdvancedScienceNews)
重庆大学孙宽课题组《Adv. Sci.》:机器学习及量子化学辅助高性能非富勒烯受体开发(化学与材料科学)
重庆大学孙宽团队Adv. Sci.:利用机器学习和量子化学开发高效非富勒烯受体(有机光电前沿)
44. Zheng, Y. J.; Zhang, Q.; Odunmbaku, O.; Ou, Z.; Li, M.; Sun, K., Tuning the carrier type and density of monolayer tin selenide via organic molecular doping. Journal of Physics: Condensed Matter 2022, 34 (8), 085001.(IF=2.745)
https://iopscience.iop.org/article/10.1088/1361-648X/ac3691
2021:
43. Xiong, Z.; Chen, X.; Zhang, B.; Odunmbaku, G. O.; Ou, Z.; Guo, B.; Yang, K.; Kan, Z.; Lu, S.; Chen, S.; Ouedraogo, N. A. N.; Cho, Y.; Yang, C.; Chen, J.; Sun, K., Simultaneous Interfacial Modification and Crystallization Control by Biguanide Hydrochloride for Stable Perovskite Solar Cells with PCE of 24.4%. Advanced Materials 2022, 34 (8), 2106118.(IF=30.84,封面论文)
https://onlinelibrary.wiley.com/doi/10.1002/adma.202106118
相关报道:
埋底界面修饰实现24.4%光电转换效率钙钛矿太阳能电池- X-MOL资讯
重庆大学AM: 24.4%效率!盐酸双胍界面修饰实现稳定钙钛矿电池 (知光谷)
42. Li, S.; Li, J.; Geng, Y.; Liao, Y.; Chen, S.; Sun, K.; Li, M., Shape-stable phase change composites based on carbonized waste pomelo peel for low-grade thermal energy storage. Journal of Energy Storage 2022, 47, 103556.(IF=6.583)
https://www.sciencedirect.com/science/article/pii/S2352152X21012354
41. Xiong, Z.; Lan, L.; Wang, Y.; Lu, C.; Qin, S.; Chen, S.; Zhou, L.; Zhu, C.; Li, S.; Meng, L.; Sun, K.; Li, Y., Multifunctional Polymer Framework Modified SnO2 Enabling a Photostable α-FAPbI3 Perovskite Solar Cell with Efficiency Exceeding 23%. ACS Energy Letters 2021, 6, 3824-3830. (IF=23.10,封面论文)
https://pubs.acs.org/doi/10.1021/acsenergylett.1c01763
相关报道:
重庆大学孙宽教授等《ACS Energy Letter》封面:多功能聚合物骨架提升钙钛矿电池效率及稳定性 (高分子科学前沿)
中科院化学所孟磊团队:多功能聚合物骨架改性的SnO2使光稳定的 α-FAPbI3 钙钛矿太阳能电池的效率超过 23% (钙钛矿太阳能电池)
40. Sun, W.; Zheng, Y.; Zhang, Q.; Yang, K.; Chen, H.; Cho, Y.; Fu, J.; Odunmbaku, O.; Shah, A. A.; Xiao, Z.; Lu, S.; Chen, S.; Li, M.; Qin, B.; Yang, C.; Frauenheim, T.; Sun, K., Artificial Intelligence Designer for Highly-Efficient Organic Photovoltaic Materials. The Journal of Physical Chemistry Letters 2021, 12, 8847-8854. (自然指数期刊,IF=6.475)
https://pubs.acs.org/doi/10.1021/acs.jpclett.1c02554
相关报道:
J. Phys. Chem. Lett.┃人工智能辅助的有机光伏材料设计- X-MOL资讯
39. Ying, P.; Ai, B.; Hu, W.; Geng, Y.; Li, L.; Sun, K.; Tan, S. C.; Zhang, W.; Li, M., A bio-inspired nanocomposite membrane with improved light-trapping and salt-rejecting performance for solar-driven interfacial evaporation applications. Nano Energy 2021, 89, 106443. (IF=17.88)
https://www.sciencedirect.com/science/article/pii/S2211285521006984
相关报道:
重庆大学李猛Nano Energy:仿生能源策略助力高效稳定界面太阳能水蒸发 (能源学人)
38. Xiong, Z.; Chen, S.; Zhao, P.; Cho, Y.; Odunmbaku, G. O.; Zheng, Y.; Jones, D. J.; Yang, C.; Sun, K., Phase Transition Modulation and Defects Suppression in Perovskite Solar Cells Enabled by a Self-sacrificed Template. Solar RRL 2021, 5 (9), 2100448.(IF=8.582)
https://onlinelibrary.wiley.com/doi/10.1002/solr.202100448
37. Chen, R.; Zhang, L.; Zhou, Y.; Ren, Z.; Zhang, Y.; Guo, B.; Xing, X.; Odunmbaku, G. O.; Li, Y.; Sun, K., In-situ synthesis of large-area PANI films via sequential solution polymerization technique for electrochromic applications. Giant 2021, 8, 100072.
https://www.sciencedirect.com/science/article/pii/S266654252100028X
相关报道:
连续液相聚合法原位制备聚大面积苯胺薄膜 (GIANT journal)
36. 郑玉杰, 梁鑫斌, 张起, 孙文博, 施童超, 杜鹃, 孙宽, 基于分子指纹及机器学习回归模型的有机光伏材料效率预测. 材料导报 2021, 35 (8), 8207-8212.
http://www.mater-rep.com/CN/10.11896/cldb.20020113
35. Yang, K.; Chen, S.; Zhou, Y.; Odunmbaku, G. O.; Xiong, Z.; Yang, Q.; Wang, M.; Kan, Z.; Xiao, Z.; Lu, S.; Sun, K., Annealing-free alcohol-processable MoOx anode interlayer enables efficient light utilization in organic photovoltaics. Journal of Energy Chemistry 2021, 61, 141-146.(IF=9.676)
https://www.sciencedirect.com/science/article/pii/S2095495621001303
34. Shu, Y.; Odunmbaku, G. O.; He, Y.; Zhou, Y.; Cheng, H.; Ouyang, J.; Sun, K., Cation effect of inorganic salts on ionic Seebeck coefficient. Applied Physics Letters 2021, 118 (10), 103902. (自然指数期刊,IF=3.791)
https://aip.scitation.org/doi/10.1063/5.0043498
33. Wang, J.; He, J.; Omololu Odunmbaku, G.; Zhao, S.; Gou, Q.; Han, G.; Xu, C.; Frauenheim, T.; Li, M., Regulating the electronic structure of ReS2 by Mo doping for electrocatalysis and lithium storage. Chemical Engineering Journal 2021, 414, 128811.(IF=13.273)
https://www.sciencedirect.com/science/article/pii/S1385894721004071
32. Zhang, L.; Zheng, Y.; Wang, J.; Geng, Y.; Zhang, B.; He, J.; Xue, J.; Frauenheim, T.; Li, M., Ni/Mo Bimetallic‐Oxide‐Derived Heterointerface‐Rich Sulfide Nanosheets with Co‐Doping for Efficient Alkaline Hydrogen Evolution by Boosting Volmer Reaction. Small 2021, 17 (10), 2006730.(IF=13.281)
https://www.onlinelibrary.wiley.com/doi/10.1002/smll.202006730
31. Hu, D.; Yang, Q.; Zheng, Y.; Tang, H.; Chung, S.; Singh, R.; Lv, J.; Fu, J.; Kan, Z.; Qin, B.; Chen, Q.; Liao, Z.; Chen, H.; Xiao, Z.; Sun, K.; Lu, S., 15.3% Efficiency All-Small-Molecule Organic Solar Cells Achieved by a Locally Asymmetric F, Cl Disubstitution Strategy. Advanced Science 2021, 8 (8), 2004262.(IF=16.806)
https://onlinelibrary.wiley.com/doi/full/10.1002/advs.202004262
30. Qin, J.; Zhang, L.; Zuo, C.; Xiao, Z.; Yuan, Y.; Yang, S.; Hao, F.; Cheng, M.; Sun, K.; Bao, Q.; Bin, Z.; Jin, Z.; Ding, L., A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. Journal of Semiconductors 2021, 42 (1), 010501.
http://www.jos.ac.cn/article/doi/10.1088/1674-4926/42/1/010501
29. Chen, S.; Ye, J.; Yang, Q.; Oh, J.; Hu, D.; Yang, K.; Odunmbaku, O.; Li, F.; Yu, Q.; Kan, Z.; Xiao, Z.; Yang, C.; Lu, S.; Sun, K., Molecular Ordering and Phase Segregation Induced by a Volatile Solid Additive for Highly Efficient All-Small-Molecular Organic Solar Cells. Journal of Materials Chemistry A 2021, 9, 2857-2863.(IF=12.733)
https://pubs.rsc.org/en/Content/ArticleLanding/2020/TA/D0TA10649F#!divAbstract
28. Sun, Z.; He, Y.; Xiong, B.; Chen, S.; Li, M.; Zhou, Y.; Zheng, Y.; Sun, K.; Yang, C., Performance-enhancing Approaches for the PEDOT:PSS-Si Hybrid Solar Cells. Angewandte Chemie International Edition 2021, 60 (10), 5036-5055. (自然指数期刊,IF=16.823)
https://onlinelibrary.wiley.com/doi/10.1002/anie.201910629
27. Geng, Y.; Sun, W.; Ying, P.; Zheng, Y.; Ding, J.; Sun, K.; Li, L.; Li, M., Bioinspired Fractal Design of Waste Biomass‐Derived Solar–Thermal Materials for Highly Efficient Solar Evaporation. Advanced Functional Materials 2021, 31 (3), 5036-5055.(自然指数期刊,IF=18.808)
https://onlinelibrary.wiley.com/doi/10.1002/adfm.202007648
相关报道:
重庆大学李猛/弗吉尼亚理工大学Li Ling《AFM》:仿生分形结构设计助力生物质源高效界面太阳能水蒸发 (高分子科学前沿)
Advanced Functional Materials:仿生分形结构设计助力生物质源高效界面太阳能水蒸发 (materialsviewschina.com)
AFM:仿生分形结构设计助力生物质源高效界面太阳能水蒸发 (MaterialsViews)
2020:
26. Wang, T.; Qin, J.; Xiao, Z.; Zhang, J.; Chen, Z.; Zhang, L.; Cheng, M.; Jin, Z.; Yuan, Y.; Wu, W.-Q.; Duan, C.; Xie, S.; Sun, K.; Hao, F.; Ding, L., Multiple conformation locks gift polymer donor high efficiency. Nano Energy 2020, 77, 105161. (IF=16.60)
https://www.sciencedirect.com/science/article/pii/S2211285520307394
25. Qin, J.; Zhang, L.; Xiao, Z.; Chen, S.; Sun, K.; Zang, Z.; Yi, C.; Yuan, Y.; Jin, Z.; Hao, F.; Cheng, Y.; Bao, Q.; Ding, L., Over 16% efficiency from thick-film organic solar cells. Science Bulletin 2020, 65 (23), 1979-1982.(IF=9.51)
https://www.sciencedirect.com/science/article/pii/S2095927320305636
24. Ying, P.; Li, M.; Yu, F.; Geng, Y.; Zhang, L.; He, J.; Zheng, Y.; Chen, R., Band Gap Engineering in an Efficient Solar-Driven Interfacial Evaporation System. ACS Applied Materials & Interfaces 2020, 12 (29), 32880-32887.(IF=9.229)
https://pubs.acs.org/doi/10.1021/acsami.0c09965
23. Qin, J.; Lan, L.; Chen, S.; Huang, F.; Shi, H.; Chen, W.; Xia, H.; Sun, K.; Yang, C., Recent Progress in Flexible and Stretchable Organic Solar Cells. Advanced Functional Materials 2020. 30 (36), 2002529.(自然指数期刊,IF=18.808)
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202002529
相关报道:
重庆大学孙宽研究员/陈珊珊副研究员-柔性可再生能源材料与器件课题组-AFM综述:柔性可拉伸有机太阳电池的最新进展 (科学材料站)
22. Yang, K.; Chen, S.; Fu, J.; Jung, S.; Ye, J.; Kan, Z.; Hu, C.; Yang, C.; Xiao, Z.; Lu, S.; Sun, K., Molecular Lock Induced by Chloroplatinic Acid Doping of PEDOT:PSS for High-Performance Organic Photovoltaics. ACS Applied Materials & Interfaces 2020, 12 (27), 30954–30961.(IF=9.229)
https://pubs.acs.org/doi/10.1021/acsami.0c06759
相关报道:
重庆大学孙宽/中科院重庆研究院陆仕荣:给有机光伏电池界面加把分子锁 (高分子科学前沿)
21. Chen, R.; Chen, S.; Zhou, Y.; Wei, Z.; Wang, H.; Zheng, Y.; Li, M.; Sun, K.; Li, Y., Unsubstituted Polythiophene Film Deposited via In-Situ Sequential Solution Polymerization for Chemo-/Electrochromism. Macromolecules 2020, 53 (11), 4247–4254. (自然指数期刊,IF=5.985)
https://pubs.acs.org/doi/10.1021/acs.macromol.0c00297
相关报道:
重庆大学孙宽团队:规模化原位沉积聚噻吩薄膜 (高分子科学前沿)
20. Gou, Q.; Zhao, S.; Wang, J.; Li, M.; Xue, J., Recent Advances on Boosting the Cell Voltage of Aqueous Supercapacitors. Nano-Micro Letters 2020, 12 (1), 98.(IF=16.418)
https://link.springer.com/article/10.1007/s40820-020-00430-4
相关报道:
CQU-NUS新能源材料与器件联合实验室:水系超级电容器电压窗口拓宽和柔性碳基储能器件的研究策略及发展趋势 (能源学人)
19. Zhao, S.; Li, M.; Wu, X.; Yu, S. H.; Zhang, W.; Luo, J.; Wang, J.; Geng, Y.; Gou, Q.; Sun, K., Graphene-based free-standing bendable films: designs, fabrications, and applications. Materials Today Advances 2020, 6 , 100060.(IF=7.579)
https://www.sciencedirect.com/science/article/pii/S2590049820300072
18. Fu, J.; Chen, S.; Yang, K.; Jung, S.; Lv, J.; Lan, L.; Chen, H.; Hu, D.; Yang, Q.; Duan, T.; Kan, Z.; Yang, C.; Sun, K.; Lu, S.; Xiao, Z.; Li, Y., A "sigma-Hole"-Containing Volatile Solid Additive Enabling 16.5% Efficiency Organic Solar Cells. iScience 2020, 23 (3), 100965. (Cell子刊,IF=5.458)
https://www.sciencedirect.com/science/article/pii/S2589004220301498
17. Xu, J.; Wang, R.; Chen, S.; Zhang, C.; Liu, L.; Huang, F.; Lu, X.; Yang, C.; Wang, X.; Xiao, M., Hole Transfer Promoted by a Viscosity Additive in an All-Polymer Photovoltaic Blend. The Journal of Physical Chemistry Letters 2020, 11 (4), 1384-1389. (自然指数期刊,IF=6.71)
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c00025
16. Wang, T.; Qin, J.; Xiao, Z.; Meng, X.; Zuo, C.; Yang, B.; Tan, H.; Yang, J.; Yang, S.; Sun, K.; Xie, S.; Ding, L., A 2.16 eV bandgap polymer donor gives 16% power conversion efficiency. Science Bulletin 2020, 65 (3), 179-181.(IF=9.51)
https://www.sciencedirect.com/science/article/pii/S2095927319306875
15. Dong, X.; Yang, K.; Tang, H.; Hu, D.; Chen, S.; Zhang, J.; Kan, Z.; Duan, T.; Hu, C.; Dai, X.; Xiao, Z.; Sun, K.; Lu, S., Improving Molecular Planarity by Changing Alky Chain Position Enables 12.3% Efficiency All‐Small‐Molecule Organic Solar Cells with Enhanced Carrier Lifetime and Reduced Recombination. Solar RRL 2020, 4 (1), 1900326.(IF=7.523)
https://onlinelibrary.wiley.com/doi/10.1002/solr.201900326
2019:
14. Chen, H.; Hu, D.; Yang, Q.; Gao, J.; Fu, J.; Yang, K.; He, H.; Chen, S.; Kan, Z.; Duan, T.; Yang, C.; Ouyang, J.; Xiao, Z.; Sun, K.; Lu, S., All-Small-Molecule Organic Solar Cells with an Ordered Liquid Crystalline Donor. Joule 2019, 3 (12), 3034-3047. (Cell子刊,IF=27.054)
https://www.sciencedirect.com/science/article/abs/pii/S2542435119304696
相关报道:
基于有序液晶小分子给体的全小分子有机太阳能电池 (能源学人)
13. Zhang, L.; Yang, K.; Chen, R.; Zhou, Y.; Chen, S.; Zheng, Y.; Li, M.; Xu, C.; Tang, X.; Zang, Z.; Sun, K., The Role of Mineral Acid Doping of PEDOT:PSS and Its Application in Organic Photovoltaics. Advanced Electronic Materials 2019, 6 (1), 1900648.(IF=6.593)
https://onlinelibrary.wiley.com/doi/10.1002/aelm.201900648
12. Sun, W. B.; Zheng, Y. J.; Yang, K.; Zhang, Q.; Shah, A. A.; Wu, Z.; Sun, Y. Y.; Feng, L.; Chen, D. Y.; Xiao, Z. Y.; Lu, S. R.; Li, Y.; Sun, K., Machine learning-assisted molecular design and efficiency prediction for high-performance organic photovoltaic materials. Science Advances 2019, 5 (11), eaay4275. (Science子刊,IF=12.805)
https://advances.sciencemag.org/content/5/11/eaay4275
相关报道:
重庆大学孙宽等《Science》子刊:机器学习辅助分子设计及高性能有机光伏材料的效率预测 (高分子科学前沿)
重庆大学孙宽团队成功实现通过机器学习筛选有机光伏材料 (nsfc.gov.cn)
High-Performance OPVs Through Machine Learning (azom.com)
11. Xiong, Z.; Hu, W.; She, Y.; Lin, Q.; Hu, L.; Tang, X.; Sun, K., Air-Stable Lead-Free Perovskite Thin Film Based on CsBi3I10 and Its Application in Resistive Switching Devices. ACS Applied Materials & Interfaces 2019, 11 (33), 30037-30044.(IF=8.456)
https://pubs.acs.org/doi/10.1021/acsami.9b09080
10. Jia, X. e.; Liu, G.; Chen, S.; Li, Z.; Wang, Z.; Yin, Q.; Yip, H.-L.; Yang, C.; Duan, C.; Huang, F.; Cao, Y., Backbone Fluorination of Polythiophenes Improves Device Performance of Non-Fullerene Polymer Solar Cells. ACS Applied Energy Materials 2019, 2 (10), 7572-7583.(IF=4.473)
https://pubs.acs.org/doi/10.1021/acsaem.9b01532
9. Tao, P.; He, J.; Shen, T.; Hao, Y.; Yan, J.; Huang, Z.; Xu, X.; Li, M.; Chen, Y., Nitrogen‐Doped MoS2 Foam for Fast Sodium Ion Storage. Advanced Materials Interfaces 2019, 6 (13), 1900460.(IF=4.713)
https://onlinelibrary.wiley.com/doi/10.1002/admi.201900460
8. Sun, W.; Li, M.; Li, Y.; Wu, Z.; Sun, Y.; Lu, S.; Xiao, Z.; Zhao, B.; Sun, K., The Use of Deep Learning to Fast Evaluate Organic Photovoltaic Materials. Advanced Theory and Simulations 2019, 2 (1), 1800116. (封面论文,IF=2.951)
https://onlinelibrary.wiley.com/doi/10.1002/adts.201800116
相关报道:
重庆大学孙宽&李勇建立基于深度学习的有机太阳能电池给体材料快速评估新方法 (能源学人)
7. Geng, Y.; Zhang, K.; Yang, K.; Ying, P.; Hu, L.; Ding, J.; Xue, J.; Sun, W.; Sun, K.; Li, M., Constructing hierarchical carbon framework and quantifying water transfer for novel solar evaporation configuration. Carbon 2019, 155, 25-33.(IF=8.821)
https://www.sciencedirect.com/science/article/abs/pii/S0008622319308644
相关报道:
太阳能蒸汽发生装置中构建多级碳结构与定量水输运 (能源学人)
6. Wang, J.; Zhang, L.; Sun, K.; He, J.; Zheng, Y.; Xu, C.; Zhang, Y.; Chen, Y.; Li, M., Improving ionic/electronic conductivity of MoS2 Li-ion anode via manganese doping and structural optimization. Chemical Engineering Journal 2019, 372, 665-672.(IF=8.356)
https://www.sciencedirect.com/science/article/pii/S1385894719309891
5. Chen, R.; Sun, K.; Zhang, Q.; Zhou, Y.; Li, M.; Sun, Y.; Wu, Z.; Wu, Y.; Li, X.; Xi, J.; Ma, C.; Zhang, Y.; Ouyang, J., Sequential Solution Polymerization of Poly(3,4-ethylenedioxythiophene) Using V2O5 as Oxidant for Flexible Touch Sensors. iScience 2019, 12, 66-75. (Cell子刊,IF=4.447)
https://www.sciencedirect.com/science/article/pii/S2589004219300033
相关报道:
Cell子刊《iScience》重大孙宽研究员团队开发连续液相聚合技术原位合成导电高分子薄膜 (高分子科学前沿)
4. Wang, M.; Wang, H.; Li, W.; Hu, X.; Sun, K.; Zang, Z., Defect passivation using ultrathin PTAA layers for efficient and stable perovskite solar cells with a high fill factor and eliminated hysteresis. Journal of Materials Chemistry A 2019, 7 (46), 26421-26428. (IF=10.73)
https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta08314f#!divAbstract
3. Chen, F.; Zhang, L.; Wu, H.; Guan, C.; Yang, Y.; Qiu, J.; Lyu, P.; Li, M., Bifunctional oxygen evolution and supercapacitor electrode with integrated architecture of NiFe-layered double hydroxides and hierarchical carbon framework. Nanotechnology 2019, 30 (32), 325402.(IF=3.399)
https://iopscience.iop.org/article/10.1088/1361-6528/ab178c
2. Tang, X.; Bian, Y.; Liu, Z.; Du, J.; Li, M.; Hu, Z.; Yang, J.; Chen, W.; Sun, L., Room-temperature up-conversion random lasing from CsPbBr3 quantum dots with TiO2 nanotubes. Optics Letters 2019, 44 (19), 4706-4709.(IF=3.866)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-44-19-4706&origin=search
1. Hu, L.; Fu, J.; Yang, K.; Xiong, Z.; Wang, M.; Yang, B.; Wang, H.; Tang, X.; Zang, Z.; Li, M.; Li, J.; Sun, K., Inhibition of In‐Plane Charge Transport in Hole Transfer Layer to Achieve High Fill Factor for Inverted Planar Perovskite Solar Cells. Solar RRL 2019, 3 (7), 1900104. (Solar RRL热点文章排行榜TOP10,IF=7.527)
https://onlinelibrary.wiley.com/doi/10.1002/solr.201900104
相关报道: