5104
当前位置: 首页   >  成果及论文
成果及论文

2024

[5] Guo, S.; Zhu, R.; Chen, J.; Liu, W.; Zhang, Y.; Li, J.*; Li. H.*MXene-based all-solid flexible electrochromic micro-supercapacitorMicrosyst. Nanoeng., 2024, 10, 89.

[4] Shen, J.; Li, X.; Wang Y.; Li, Y.; Bian, J.; Zhu, X.; He, X.; Li, J.*, Anti-motion interference electrocardiograph monitoring system - A review. IEEE Sens. J., 2024, 10, 15727-15747.

[3] Wu, W.; Guo, S.; Bian, J.; He, X.; Li, H.*; Li, J.*, Viologen-based flexible electrochromic devices. J. Energy Chem., 2024, 93, 453-470.

[2] Li, Y.; Pang, Y.; Wang, L.; Li, Q.; Liu, B.; Li, J.*; Liu, S.; Zhao, Q.*, Boosting the performance of PEDOT:PSS based electronics via ionic liquids, Adv. Mater., 2024, 2310973.

[1] Bian, J.;  Zhou, X.;  Zhou, X.; Ma, L.; Zhu, X.; Li, J.*; Liu, S.; Zhao, Q.*, High-strain-sensitive dynamically adjustable electromagnetic interference shielding elastomer with pre-linked nickel chainsSci. China Mater., 2024, 67, 629-641.


2023

[3] Wu, Z.; Liu, J.; He, X.; Bian, J.; Zhu, X.; Chen, J.; Li, J.*, Free-standing β-Ta2O5/SWCNTs composite film for high-rate Li-ion storage, Sci. China Technol. Sc., 2023, 67, 616-626.

[2] Xiao, M.; Miao, C.; Bian, J.; Li, J.*, Wet-spun MXene fibers and their wearable applicationsLaser Optoelectron. P., 2023, 60, 1316013.

[1] Li, J.*; Miao, C.; Bian, J.; Seyedin, S.; Li, K., MXene fibers for electronic textiles: Progress and perspectivesChinese Chem. Lett., 2023, 34, 107996.


2022

[2] Zhao, W.; Xu, H.; Zhao, J.; Zhu, X.; Lu, Y.; Ding, C.; He, W.; Bian, J.; Liu, L.; Ma, L.; Wang, W.; Zhou, T.; Zhou, X.; Li, J.; Liu, S.; Zhao, Q.*, Flexible, lightweight and multi-level superimposed titanium carbide films for enhanced electromagnetic interference shieldingChem. Eng. J., 2022, 437, 135266.

[1] Cao, Y.; Guo, Y.*; Chen, Z.; Yang, W.; Li, K.; He, X. Li, J.*, Highly sensitive self-powered pressure and strain sensor based on crumpled MXene film for wireless human motion detectionNano Energy, 2022, 92, 106689. 


2021

[8] Wang, X.; Bak, S.; Han, M.; Shuck, C. E.; McHugh, C.; Li, K.; Li, J.; Tang, J.; Gogotsi, Y., Surface redox pseudocapacitance of partially oxidized titanium carbide MXene in water-in-salt electrolyteACS Energy Lett., 2021, 7, 30-35.

[7] Zhang, L.; Li, J.; Yue, S.; He, H.; Ouyang, J., Biocompatible blends of an intrinsically conducting polymer as stretchable strain sensors for real-time monitoring of starch-based food processing, Adv. Funct. Mater., 2021, 31, 2102745.

[6] Li, J.; Zhuang, Y.; Chen, J.; Li, B.; Wang, L.; Liu, S.; Zhao, Q., Two-dimensional materials for electrochromic applications, EnergyChem, 2021, 3, 100060.

[5] Li, M.; Wang, L.; Liu, R.; Li, J.; Zhang, Q.; Shi, G.; Li, Y.; Hou, C.; Wang, H., A highly integrated sensing paper for wearable electrochemical sweat analysis, Biosens. Bioelectron., 2021, 174, 112828.

[4] Li, J.; Wang, X.; Sun, W.; Maleski, K.; Shuck, C.; Li, K.; Urbankowski, P.; Hantanasirisakul, K.; Wang, X.; Kent, P.; Wang, H.; Gogotsi, Y., Intercalation induced reversible electrochromic behavior of two-dimensional Ti3C2Tx MXene in organic electrolytes, ChemElectroChem, 2021, 8, 151-156. 

[3] Li, R.; Ma, X.; Li, J.; Cao, J.; Gao, H.; Li, T.; Zhang, X.; Wang, L.; Zhang, Q.; Wang, G.; Hou, C.; Li, Y.; Palacios, T.; Lin Y.; Wang, H.; Ling, X., Flexible and high-performance electrochromic devices enabled by self-assembled 2D TiO2/MXene heterostructures, Nat. Commun., 2021, 12, 1-11.

[2] Li, J.; Chen, J., Wang, H.; Xiao, X., All MXene cotton based supercapacitor-powered human body thermal management system, ChemElectroChem, 2021, 8, 648-655. 

[1] Wang, H.†; Li, J.†; Li, K.; Lin, Y.; Chen, J.; Gao, L.; Nicolosi, V.; Xiao, X.; Lee, J., Transition metal nitrides for electrochemical energy applications, Chem. Soc. Rev., 2021, 50, 1354-1390. 


2020

[9] Wang, B., Li, J., Hou. C., Zhang, Q., Li, Y., Wang, H., A Stable Hydrogel Electrolyte for Flexible and Submarine Worked Zn-Ion BatteriesACS Appl. Mater. Interfaces, 2020, 12, 46005-46014. 

[8] Li, J.; Shao, Y.; Li, Y; Zhang, Q.; Wang, H., Capillary force driven printing of asymmetric Na-ion micro-supercapacitors, J. Mater. Chem. A, 2020, 8, 22083-22089. 

[7] Fang, Y., Cheng, H., He, H., Wang, S., Li, J., Yue, S., Zhang, L., Dou, Z., Ouyang, J., Stretchable and Transparent Ionogels with High Thermoelectric PropertiesAdv. Funct. Mater., 2020, 30, 2004699. 

[6] Shui, W.; Li, J.; Wang, H.†; Xing, Y.; Li, Y.; Yang, Q.; Xiao, X.; Wen, Q.; Zhang, H., Ti3C2Tx MXene Sponge Composite as Broadband Terahertz Absorber, Adv. Opt. Mater., 2020, 8, 2001120. 

[5] Wang, H.†; Li, J.†; Kuai, X.; Bu, L.; Gao, L.; Xiao, X.; Gogotsi, Y., Enhanced Rate Capability of Ion-Accessible Ti3C2Tx-NbN Hybrid Electrodes, Adv. Energy Mater., 2020, 10, 2001411. 

[4] Liu, R., Li, J., Li, M., Zhang, Q., Shi, G., Li, Y., Hou. C., Wang, H., MXene-Coated Air Permeable Pressure-Sensing Fabric for Smart WearACS Appl. Mater. Interfaces, 2020, 12, 46446-46454. 

[3] Li, J.; Wang, H.; Xiao, X., Intercalation in Two‐Dimensional Transition Metal Carbides and Nitrides (MXenes) toward Electrochemical Capacitor and Beyond, Energy Environ. Mater., 2020, 3, 306-322.

[2] Wang, H.; Lin, Y.; Liu, S.; Li J.; Bu, L.; Chen, J.; Xiao, X.; Choi, J.; Gao, L.; Lee, J., Confined growth of pyridinic N–Mo2C sites on MXenes for hydrogen evolutionJ. Mater. Chem. A, 2020, 8(15), 7109-7116. 
[1] Li, K.; Wang, X.; Li, S.; Urbankowski, P.; Li, J.; Xu, Y.; Gogotsi, Y., An Ultrafast Conducting Polymer@MXene Positive Electrode with High Volumetric Capacitance for Advanced Asymmetric SupercapacitorsSmall, 2020, 16(4), 1906851. 


2019

[3] Li, J. ; An, L.; Sun, J.; Shuck, C., Wang, X.; Shao, Y.; Li, Y; Zhang, Q.; Wang, H., Tunable Stable Operating Potential Window for High-Voltage Aqueous Supercapacitors, Nano Energy, 2019, 63, 103848.    

[2] Li, J.; Kurra, N.; Seredych, M.; Meng, X.; Wang, H.; Gogotsi, Y., Bipolar carbide-carbon high voltage aqueous lithium-ion capacitors, Nano Energy, 2019, 56, 151-159.

[1] Li, J.; Levitt, A.; Kurra, N.; Juan, K.; Noriega, N.; Xiao, X.; Wang, X.; Wang, H.; Alshareef, H. N.; Gogotsi Y., MXene-conducting polymer electrochromic microsupercapacitors, Energy Storage Mater., 2019, 20, 455-461. 


2018

[1] Li, J.; Li, H.; Li, J.; Wu, G.; Shao, Y.; Li, Y.; Zhang, Q.; Wang, H., A single-walled carbon nanotubes/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)/copper hexacyanoferrate hybrid film for high-volumetric performance flexible supercapacitors, J. Power Sources, 2018, 386, 96-105. 


2017

[2] Shao, Y.; Li, J.; Li, Y.; Wang, H.; Zhang, Q.; Kaner, R. B., Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene filmsMater. Horiz., 2017, 4 (6), 1145-1150. 
[1] Li, H.; Li, J.; Hou, C.; Ho, D.; Zhang, Q.; Li, Y.; Wang, H., Solution-Processed Porous Tungsten Molybdenum Oxide Electrodes for Energy Storage Smart WindowsAdv. Mater. Technol., 2017, 2(8), 1700047. 


2016

[1] Li, J.; Wu, B.; Zhang, Q.; Wang, H.; Li, Y., Highly Luminescent Mesoporous Zn2TiO4:Eu3+ Material with Excellent Sensing and Removal Abilities for Heavy-Metal Ions, J. Nanosci. Nanotechnol., 2016, 16(9), 9568-9574. 


2015

[1] He, G.†; Li, J.; Li, W.; Li, B.; Noor, N.; Xu, K.; Hu, J.; Parkin, I. P., One pot synthesis of nickel foam supported self-assembly of NiWO4 and CoWO4 nanostructures that act as high performance electrochemical capacitor electrodes, J. Mater. Chem. A, 2015, 3(27), 14272-14278.