Representative Publications:
Yu, J. –L.; Zhang, S. –Q.; Hong, X.* J. Am. Chem. Soc. 2017, 139, 7224–7243.
Ji, C. –L.; Hong, X.* J. Am. Chem. Soc. 2017, 139, 15522–15529.
Li, X.; Zhang, S.–Q.; Xu, L.–C.; Hong, X.* Angew. Chem. Int. Ed. 2020, 32, 13253-13259.
Zhang, S. -Q.; Hong, X.* Acc. Chem. Res. 2021, 54, 2158−2171.
Xu, L. -C.; Zhang, S. -Q.; Li, X.; Tang, M. -J.; Xie, P. -P.; Hong, X.* Angew. Chem. Int. Ed. 2021, 60, 22804-22811.
Full Publication List:
Publications at ZJU
146*. Recent Advances in Theoretical Studies on Cu-Mediated Bond Formation Mechanisms Involving Radicals
Liu, J.–R.; Xu, G.–X.; Liu, L.–G.; Zhang, S.–Q.*; Hong, X.* ACS Catal. 2024, 14, 2429-2454
145*. Intermolecular trans-bis-silylation of terminal alkynes
Zhao, S.; Zhang, Y.; Wu, R.–K.; Yin, K.–L.; Hong, X.*; Zhao, D.–B.* Nat. Synth. 2023, 10, 937-948
144*. Triazole-modified Ru-carbene complexes: A valid covalent chemistry via C=C bond formation
Wang, C.–H.; Zhang, S.–Y. ; Yuan, T.; Jimoh, A.–A.; Abreu, M.; Shan, C.; Wojtas, L.; Xing, Y.–Y. ; Hong, X.*; Shi, X.–D.* Chem Catal. 2023, 3, 100678
Li, G.–C.; Shi, S.–C.; Qian, J.; Norton, J.–R.*; Xu, G.–X.; Liu, J.–R.; Hong, X.* JACS Au 2023, 3, 3366-3373
142*. Aryl Chloride-Directed Enantioselective C(sp2)-H Borylation Enabled by Iridium Catalysis
Zhao, H.–L.; Zhao, C.–Y.; Chen, L.–L.; Xia, C.–G.*,; Hong, X.*; Xu, S.–M.*J. Am. Chem. Soc. 2023, 145,46,25214-25221
141*. Mechanisms of nickel-catalyzed reductive cross-coupling reactions
Wu, H.–L.; Zhang, S. –Q.*; Hong, X.* Chemical Synthesis 2023, 3, 39
140*. Enantioconvergent Palladium-Catalyzed Alkylation of Tertiary Allylic C-H Bonds
Nong, Z. –S.; Chen, X. –R.; Wang, P. –S.*; Hong, X.*; Gong, L. –Z.* Angew. Chem. Int. Ed. 2023, 62,e202312547
Zhang, Z. –J; Li, S. –W.; Oliveira, J. C. A.; Li, Y. –J; Chen, X. –R.; Zhang, S. –Q.; Xu, L. –C.; Rogge, T.; Hong, X.*; Ackermann, L.* Nat. Commun. 2023, 14, 3149
Li, S. –W; Xu, L. –C.; Zhang, C.; Zhang, S. –Q.*; Hong, X.* Nat. Commun. 2023, 14, 3569.
Lin, Z. –P.; Dhawa, U.; Hou, X. –Y.; Surke, M.; Yuan, B. –B.; Li, S. –W.; Liou, Y. –C.; Johansson, M. J.; Xu, L. –C.; Chao, C. –H.; Hong, X.*; Ackermann, L.* Nat. Commun. 2023, 14, 4224
Zhao, C. –Y,; Wu, R. –K.; Zhang, S. –Q.*; Hong, X.* J. Phys. Chem. A 2023, 127, 6791-6803
Li, Y. –Y.; Zhang, S. –Q.*; Hong, X.* Chem. Asian. J. 2023, 18, e202300375
Wei, J. –W.; Xing, Y. –Y.; Ye, X. –H.; Nguyen, B.; Wojtas, L.; Hong, X.*; Shi, X. –D.* Angew. Chem. Int. Ed. 2023, 62, e202305409
Xu, Y.; Qian, G. –L.; Cui, D. –Q.; Qian, P. –C.*; Zhao, C. –Y.; Hong, X.*; Zhou, B.; Ye, L. –W.* ACS Catal. 2023, 13, 8803-8812
Xia, D. –D.; Wu, R. –K.; Wang, J. –X.; Han, X. –Y.; Li, Y. –C.; Li, Q. –N.; Luan, X.; Hong, X.*; Zhang, Y.*; Zhang, W. –D.* ACS Catal. 2023, 13, 9806-9816
Chen, P. –P.; McGinnis, T. M.; Lin, P. –C.; Hong, X.*; Jarvo, E. R.* ACS Catal. 2023, 13, 5472-5481
Wang, Z. –C.; Li, Y. –Y.; Zhang, S. –Q.; Hong, X.*; Shi, S. –L.* Chem. Sci. 2023, 14, 4390-4396.
129*. Exploring Spectrum-based Molecular Descriptors for Reaction Performance Prediction
Tang, M. –J.; Xu, L. –C.; Zhang, S. –Q.*; Hong, X.* Chem. Asian. J. 2023, 18, e202300011
128*. Direct Incorporation of Dinitrogen into an Aliphatic C-H Bond
Xie, S. –J.; Wu, R. –K.; Huang, Y. –F.; Chen, H. –L.; Zhang, S. –Q.; Liu, F.; Hong, X.*; Zhai, D. –D.*; Shi, Z. –J.* J. Am. Chem. Soc. 2023, 145, 6773-6780.
Liu, C. –W.*; Xing, Y. –Y.; Zhou, T. –L.; Chen, T. –Q.; Hong, X.*; Szostak, M.* Chem. Asian. J. 2023, 18, e202201262
Zhang, J. –T.; Zhang, H. –T.; Qin, Z. –X.; Kang, Y.; Hong, X.*; Hou, T. –J.* J. Chem. Inf. Model 2023, 63, 1133-1142.
Xu, L.-C.; Frey, J; Hou, X.-Y.; Zhang, S. –Q.; Li, Y.-Y.; Oliveira, J.C.A.; Li, S.-W.; Ackermann, L.*; Hong, X.* Nat. Synth. 2023, 2, 321-330
124*. Identification of Alkoxy Radicals as Hydrogen Atom Transfer Agents in Ce-Catalyzed C–H Functionalization
An, Q.; Xing, Y. –Y.; Pu, R. –H.; Jia, M. –H.; Chen, Y. –G.; Hu, A. –H.; Zhang, S. –Q.; Yu, N.; Du, J. –B.; Zhang, Y. –X.; Chen, J. –Q.*; Liu, W. –M.*; Hong, X.*; Zuo, Z. –W.* J. Am. Chem. Soc. 2023, 145, 359-376
123*. Cu-catalysed enantioselective radical heteroatomic S–O cross-coupling
Cheng, Y. –F.; Yu, Z. –L.; Tian, Y.; Liu, J. –R.; Wen, H. –T.; Jiang, N. –C.; Bian, J. –Q.; Xu, G. –X.; Xu, D. –T.; Li, Z. –L.; Gu, Q. –S.; Hong, X.*; Liu, X. –Y.* Nat. Chem. 2022, 15, 395-404.
122*. Ir(III)-Catalyzed Asymmetric C–H Activation/Annulation of Sulfoximines Assisted by the Hydrogen-Bonding Interaction
Li, J. –Y.; Xie, P. –P.; Zhou, T.; Qian, P. –F.; Zhou, Y. –B.; Li, H. –C.; Hong, X.*; Shi, B. –F.* ACS Catal. 2022, 12, 9083-9091
121*. Bridging Chemical Knowledge and Machine Learning for Performance Prediction of Organic Synthesis
Zhang, S. –Q.; Xu, L. –C.; Li, S. –W.; Oliveira, J.; Li, X.; Ackermann, L.*; Hong, X.* Chem. -Eur. J. 2022, 29, e202202834
Yang, P. –C.; Li, Y. –Y.; Tian, H. –L.; Qian, G. –L.; Wang, Y.; Hong, X.*; Gui, J. –H.* J. Am. Chem. Soc. 2022, 144, 17769-17775.
119*. Cobalt-Catalyzed Enantioconvergent Hydrogenation of Minimally Functionalized Isomeric Olefins
Lu, P.; Wang, H. –L.; Mao, Y. –H.; Hong, X.*; Lu, Z.* J. Am. Chem. Soc. 2022, 144, 17359-17364.
Cao, H.; Kong,D. –G.; Yang, L. –C.; Chanmungkalakul, S.; Liu, T.; Piper, J.L.; Peng,Z. –H.; Gao, L. –L.; Liu, X. –G.; Hong, X.*; Wu. J.* Nat. Synth. 2022, 1, 794–803.
117*. When Machine Learning Meets Molecular Synthesis
Oliveira, J.C.A.; Frey, J.; Zhang, S. –Q.; Xu, L. –C.; Li, X.; Li, S. –W.; Hong, X.*; Ackermann, L.* Trends Chem. 2022, 4, 863–885.
Wang, B. –J.; Xu, G. –X.; Huang, Z. –W.; Wu, X.; Hong, X.*.; Yao, Q. –J.*; Shi, B.-F.* Angew. Chem. Int. Ed. 2022, 61, e202208912.
115*. (n-Bu)(4)NBr-Promoted N-2 Splitting to Molybdenum Nitride
Zhai, D. –D.; Zhang, S.- –Q.; Xie, S. –J.; Wu, R. –K.; Liu, F.; Xi, Z. –F.; Hong, X.*; Shi, Z. –J.* J. Am. Chem. Soc. 2022, 144, 14071–14078.
114*. Machine Learning Prediction of Structure-Performance Relationship in Organic Synthesis
Yang, L. –C.; Zhu, L. –J.; Zhang, S. –Q.*; Hong, X.* Chin. J. Chem. 2022, 40, 2106–2117.
113*. Cobalt-Catalyzed Migration Isomerization of Dienes
Zhao, J. –J.; Xu, G. –X.; Wang, X.; Liu, J. –R.; Ren, X.; Hong, X.*; Lu, Z.* Org. Lett. 2022, 24, 4592-4597.
Chen, C. –H.; Wang, H. –L.; Li, T. –T.; Lu, D. –P.; Li, J. –J.; Zhang, X.; Hong, X.*; Lu, Z.* Angew. Chem. Int. Ed. 2022, 61, e202205619.
Wang, F. –L.; Yang, C. –J.; Liu, J. –R.; Yang, N. –Y.; Dong, X. –Y.; Jiang, R. –Q.; Chang, X.-Y.; Li, Z. –L.; Xu, G. –X.; Yuan, D. –L.; Zhang, Y. –S.; Gu, Q. –S.; Hong, X.*; Liu, X. –Y.* Nat. Chem. 2022, 14, 949–+.
110*. Chemoselective Transamidation of Thioamides by Transition-Metal-Free N–C(S) Transacylation
Li, G. –C.; Xing, Y. –Y.; Zhao, H.; Zhang, J.; Hong, X.*; Szostak, M.* Angew. Chem. Int. Ed. 2022, 61, e202200144.
Wang, Z. –S.; Zhu, L. –J.; Li, C. –T.; Liu, B. –Y.; Hong, X.*; Ye, L. –W.* Angew. Chem. Int. Ed. 2022, 61, e202201436.
Xing, L. –W.; Liu, J.-R.; Hong, X.*; Houk, K. N.*; Luscombe, C. K.* J. Am. Chem. Soc. 2022, 144, 2311–2322.
107*. Platinum-Catalyzed Allylic C−H Alkylation with Malononitriles
Fan, L. –F.; Xie, P. –P.; Wang, P. –S.*; Hong, X.*; Gong, L. –Z.* CCS Chem. 2022, 3, 1366–1375.
106*. Machine learning prediction of hydrogen atom transfer reactivity in photoredox-mediated C–H functionalization
Yang, L. –C.; Li, X.; Zhang, S. –Q.; Hong, X.* Org. Chem. Front. 2021, 8, 6187–6195.
105*. Cp*Co(III)-Catalyzed Enantioselective Hydroarylation of Unactivated Terminal Alkenes via C–H Activation
Liu, Y. –H.; Xie, P. –P.; Liu, L.; Fan, J.; Zhang, Z. –Z.; Hong, X.*; Shi, B. –F.* J. Am. Chem. Soc. 2021, 143, 19112–19120.
Hewitt, K.A.; Xie, P. –P.; Thane, T.A.; Hirbawi, N.; Zhang, S. –Q.; Matus, A.C.; Lucas, E.L.; Hong, X.*; Jarvo, E.R.* ACS Catal. 2021, 11, 14369–14380.
103*. Asymmetric Dearomatization Catalyzed by Chiral Brønsted Acids via Activation of Ynamides
Zhang, Y. –Q.; Chen, Y. –B.; Liu, J. –R.; Wu, S. –Q.; Fan, X. –Y.; Zhang, Z. –X.; Hong, X.*; Ye, L. –W.* Nat. Chem. 2021, 13, 1093–1100.
Xu, L. –C.; Zhang, S. –Q.; Li, X.; Tang, M. –J.; Xie, P. –P.; Hong, X.* Angew. Chem. Int. Ed. 2021, 60, 22804–22811.
Liu, Z. –S.; Xie, P. –P.; Hua, Y.; Wu, C. –G.; Ma, Y. –Y.; Chen, J. –W.; Cheng, H. –G.; Hong, X.*; Zhou, Q. –H.* Chem. 2021, 7, 1917–1932.
Xu, H.; Tan, Y. –X.; Xie, P. –P.; Ding, R.; Wang, Liao, Q.; Zhang, J. –W.; Li, Q. –H.*; Wang, Y. –H.*; Hong, X.*; Lin, G. –Q.; Tian, P.* ACS Catal. 2021, 11, 8015–8022.
Wu, Y. –J.; Xie, P. –P.; Zhou, G.; Yao, Q. –J.*; Hong, X.*; Shi, B. –F.* Chem. Sci., 2021, 12, 9391–9397.
Xie, P. –P.; Qin, Z. –X.; Zhang, S. –Q.*; Hong, X.* ChemCatChem. 2021, 13, 3536–3542.
Wang, Z. –C.; Xie, P. –P.; Xu, Y. –J.; Hong, X.*; Shi, S. –L.* Angew. Chem. Int. Ed. 2021, 60, 16077–16084.
Tan, Y. –X.; , Liu, X. –Y.; Zhang, S. –Q.; Xie, P. –P.; Wang, X.; Feng, K. –R.; Yang, S. –Q.; He, Z. –T.*; Hong, X.*; Tian, P.*; Lin. G. –Q.* CCS Chem. 2021, 3, 1582–1595.
Zhang, S. –Q.; Hong, X.* Acc. Chem. Res. 2021, 54, 2158−2171.
Liu, C. –W.; Ji, C.–L.; Zhou, T. –L.; Hong, X.*; Szostak, M.* Angew. Chem. Int. Ed. 2021, 60, 10690–10699.
93*. Direct Synthesis of Ketones from Methyl Esters by Nickel–Catalyzed Suzuki–Miyaura Coupling
Zheng, Y. –L.; Xie, P. –P.; Daneshfar, O.; Houk, K.N.*; Hong, X.*; Newman, S. G.* Angew. Chem. Int. Ed. 2021, 60, 13476–13483.
92*. Kinetic Resolution of Tertiary Benzyl Alcohols via Palladium/Chiral Norbornene Cooperative Catalysis
Hua, Y.; Liu, Z. –S.; Xie, P. –P.; Ding, B.; Cheng, H. –G.; Hong, X.*; Zhou, Q. –H.* Angew. Chem. Int. Ed. 2021, 60, 12824–12828.
Liu, Y. –Z.; Wang, H. –L.; Shangguan, L. –Q.; Liu, P. –R.; Shi, B. –B.*; Hong, X.*; Huang, F. –H.* J. Am. Chem. Soc. 2021, 143, 3081–3085.
90*. Divergent rhodium–catalyzed electrochemical vinylic C–H annulation of acrylamides with alkynes
Xing, Y. –K.; Chen, X. –R.; Yang, Q. –L.; Zhang, S. –Q.; Guo, H. –M.; Hong, X.*; Mei, T. –S.* Nat. Commun. 2021, 12, 930–938.
Liu, Y. –Z.; Wang, H. –L.; Liu, P. –R.; Zhu, H.–T.Z.; Shi, B. –B.*; Hong, X.*; Huang, F. –H.* Angew. Chem. Int. Ed. 2021, 60, 5766–5770.
88*. A Molecular Stereostructure Descriptor based on Spherical Projection
Xu, L. –C.; Xin L., X; Tang, M. –J.; Yuan, L. –T.; Zheng, J. –Y.; Zhang, S. –Q.; Hong, X.* Synlett. 2020, 32, 1837–1842.
Zhu, T. –C.; Xing, Y. –Y.; Sun, Y. –J.; Duttwyler, S.*; Hong X.* Org. Chem. Front. 2020, 7, 3648–3655.
86*. Enantioselective Synthesis of Atropisomeric Anilides via Pd(II)-Catalyzed Asymmetric C-H Olefination
Yao, Q. –J.; Xie, P. –P.; Wu,Y. –J.; Feng, Y. –L.; Teng, M. –Y.; Hong, X.*; Shi,B. –F.* J. Am. Chem. Soc. 2020,142, 18266–18276.
Zhou, B.; Wang, H. –L.; Cao, Z. –Y.; Zhu, J. –W.; Liang, R. –X.; Hong, X.*, Jia, Y. –X.* Nat. Commun. 2020, 11, 4380.
Zhang, C. –J.; Wu, S. –Q.; Boopathi, S.; Zhang, X. –H.*; Hong, X.*; Gnanou, Y.*; Feng, X. –S.* ACS Sustain. Chem. Eng. 2020, 8, 13056–13063.
83*. Decarbonylative Suzuki–Miyaura Cross–Coupling of Aroyl Chlorides
Zhou, T. –L.; Xie, P. –P.; Ji, C. –L.; Hong, X.*; Szostak, M.* Org. Lett. 2020, 22, 6434–6440.
Wu, S. –Q.; Zhang, S. –Q.; Hong, X.* Org. Biomol. Chem. 2020, 18, 5414–5419.
81*. Catalytic and Photochemical Strategies to Stabilized Radicals Based on Anomeric Nucleophiles
Zhu, F.; Zhang, S. –Q.; Chen, Z. –H.; Rui, J. –Y.; Hong, X.*; Walczak, M.A.* J. Am. Chem. Soc. 2020, 142, 11102–11113.
Chen, X. –R.; Zhang, S. –Q.; Meyer, T.H.; Yang, C. –H.; Zhang, Q. –H.; Liu, J. –R.; Xu, H. –J.*; Cao, F. –H.*; Ackermann, L.*; Hong, X.* Chem. Sci. 2020, 11, 5790–5796.
Li, X.; Zhang, S. –Q.; Xu, L. –C.; Hong, X.* Angew. Chem. Int. Ed. 2020, 59, 13253–13259.
Zheng, S.; Zhang, S. –Q.; Saeednia, B.; Zhou, J. –W.; Anna, J.M.; Hong, X.*; Molander, G.A.* Chem. Sci. 2020, 11, 4131–4137.
Zhu, H. –T.Z.; Li, Q.; Gao, Z. –C.; Wang, H. –L.; Shi, B. –B.; Wu, Y.–T.; Shangguan, L. –Q.; Hong, X.*; Wang, F.*; Huang, F. –H.* Angew. Chem. Int. Ed. 2020, 59, 10868–10872.
Zhang, X. –Y.; Zhang, S. –Q.; Li, Q.; Xiao, F.; Yue, Z. –W.; Hong, X.*; Lei, X. –G.* Org. Lett. 2020, 22, 2920–2924.
75*. Scaling Relationships and Volcano Plots of Homogeneous Transition Metal Catalysis
Yang, L. –C.; Hong, X.* Dalton Trans. 2020, 49, 3652–3657.
Sanford, A.B.; Thane, T.A.; McGinnis, T.M.; Chen, P. –P.; Hong, X.*; Jarvo, E.R.* J. Am. Chem. Soc. 2020, 142, 5017–5023.
Cheng, Y. –F.; Liu, J. –R.; Gu, Q. –S.; Yu, Z. –L.; Wang, J.; Li, Z. –L.; Bian, J. –Q.; Wen, H.–T.; Wang, X. –J.; Hong, X*; Liu, X. –Y.* Nat. Catal. 2020, 3, 401–410.
Lucas, E.L.; Hewitt, K.A.; Chen, P. –P.; Castro, A.J.; Hong, X.*; Jarvo, E.R.* J. Org. Chem. 2020, 85, 1775–1793.
Jin, L.; Yao, Q. –J.; Xie, P. –P.; Li, Y.; Zhan, B. –B.; Han, Y. –Q.; Hong, X.*; Shi, B. –F.* Chem., 2020, 6, 497–511.
70*. Migratory Aptitudes in Rearrangements of Destabilized Vinyl Cations
Cleary, S.E.; Hensinger, M.J.; Qin, Z. –X.; Hong, X.*; Brewer, M.* J. Org. Chem. 2019, 84, 15154–15164.
69*. Palladium–Catalyzed Decarbonylative Suzuki–Miyaura Cross–Coupling of Amides by Carbon–Nitrogen Bond Activation
Zhou, T. –L.; Ji, C. –L.; Hong, X.*; Szostak, M.* Chem. Sci. 2019, 10, 9865–9871.
68*. A 3D Analogue of Phenyllithium: Solution–Phase, Solid–State, and Computational Study of the Lithiacarborane [Li–CB11H11](–)
Dontha, R.; Zhu, T. –C.; Shen, Y. –J.; Worle, M.*; Hong, X.*; Duttwyler, S.* Angew. Chem. Int. Ed. 2019, 52, 19007–19013
67*. How Solvents Control the Stereospecificity of Ni–Catalyzed Miyaura Borylation of Allylic Pivalates
Chen, P. –P.; Zhang, H. –Y.; Cheng, B.; Chen, X.; Cheng, F. –C.; Zhang, S. –Q.; Lu, Z.*; Meng, F. –K.*; Hong, X.* ACS Catal. 2019,10, 9589–9598.
66*. Aluminum–Catalyzed Selective Hydroboration of Alkenes and Alkynylsilanes
Li, F.; Bai, X.; Cai, Y.; Li, H.; Zhang, S. –Q.; Liu, F. –H.; Hong, X.*; Xu, Y. –J.*; Shi, S. –L.* Org Process Res Dev. 2019, 8, 1703–1708.
65*. Rhodium(III)–Catalyzed Asymmetric Borylative Cyclization of Cyclohexadienone–Containing 1,6–Dienes: An Experimental and DFT Study
Tan, Y. –X.; Zhang, F.; Xie, P. –P.; Zhang, S. –Q; Wang, Y. –F.; Li, Q. –H.; Tian, P*; Hong, X.*; Lin, G. –Q. * J. Am. Chem. Soc. 2019, 141, 12770−12779.
64*. Computational Studies on Ni–catalyzed Amide C–N Bond Activation
Wang, H.; Zhang, S. –Q.; Hong, X.* Chem. Commun. 2019, 76, 11330–11341
63*. Highly Chemoselective, Transition–Metal–Free Transamidation of Unactivated Amides and Direct Amidation of Alkyl Esters by N–C/O–C Cleavage
Li, G.; Ji, C. –L.; Hong, X.*; Szostak, M.* J. Am. Chem. Soc. 2019, 141, 11161−11172.
62*. Unexpected Stability of CO–Coordinated Palladacycle in Bidentate Auxiliary Directed C(sp3)–H Bond Activation: A Combined Experimental and Computational Study
Jiang, Y.; Zhang, S. –Q.; Cao, F.; Zou, J. –X.; Yu, J. –L.; Shi, B. –F.*; Hong, X.*; Wang, Z.* Organometallics 2019, 38, 2022–2030.
61*. A Unified Explanation for Chemoselectivity and Stereospecificity of Ni–Catalyzed Kumada and Cross–Electrophile Coupling Reactions of Benzylic Ethers: A Combined Computational and Experimental Study
Chen, P. –P.; Lucas, E. L.; Greene, M. A.; Zhang, S. –Q.; Tollefson, E. J.; Erickson, L. W.; Taylor, B. L. H.; Jarvo, E. R.*; Hong, X.* J. Am. Chem. Soc. 2019, 141, 5835–5855.
60*. Nucleophile–Dependent Z/E– and Regioselectivity in the Palla–dium–Catalyzed Asymmetric Allylic C–H Alkylation of 1,4–Dienes
Lin, H. –C.; Xie, P. –P.; Dai, Z. –Y.; Zhang, S. –Q.; Wang, P. –S.*; Chen, Y. –G.; Wang, T. –C.; Hong, X.*; Gong, L. –Z.* J. Am. Chem. Soc. 2019, 141, 5824–5834.
59*. Cobalt–Catalyzed Asymmetric Synthesis of gem–Bis(silyl)alkanes by Double Hydrosilylation of Aliphatic Terminal Alkynes
Guo, J.; Wang, H.; Xing, S.; Hong, X.*; Lu, Z.* Chem.,2019, 5, 881–895.
58*. C–H Acidity and Arene Nucleophilicity as Orthogonal Control of Chemoselectivity in Dual C–H Bond Activation
Liu, J. –R.; Duan, Y. –Q.; Zhang, S. –Q.; Zhu, L. –J.; Jiang, Y. –Y.*; Bi, S. –W.*; Hong, X.* Org. Lett. 2019, 21, 2360–2364.
57*. Reactivity Profiles of Diazo Amides, Esters, and Ketones in Transition–Metal–Free C–H Insertion Reactions
Cleary, S. E.; Li, X.; Yang, L. –C.; Houk, K. N.; Hong, X.*; Brewer, M.* J. Am. Chem. Soc. 2019, 141, 3558–3565.
56*. Tuning the LUMO Energy of an Organic Interphase to Stabilize Lithium Metal Batteries
Zhang, W.; Zhang, S. –Q.; Fan, L.; Gao, L.; Kong, X.; Li, S.; Li, J.; Hong, X.*; Lu, Y.* ACS Energy Lett. 2019, 4, 644–650.
55*. Enantioselective Synthesis of Atropisomers Featuring Pentatomic Heteroaromatics by Pd–Catalyzed C–H Alkynylation
Zhang, S.; Yao, Q. –J.; Liao, G.; Li, X.; Li, H.; Chen, H. –M.; Hong, X.*; Shi. B. –F.* ACS Catal. 2019, 9, 1956–1961.
54*. Highly–Chemoselective Step–Down Reduction of Carboxylic Acids to Aromatic Hydrocarbons Via Palladium Catalysis
Liu, C.; Qin, Z. –X.; Ji, C. –L.; Hong, X.*; Szostak, M.* Chem. Sci. 2019, 10, 5736–5742.
53*. Nickel–Catalyzed Kumada Coupling of Boc–Activated Aromatic Amines via Nondirected Selective Aryl C–N Bond Cleavage
Zhang, Z. –B.; Ji, C. –L.; Yang, C.; Chen, J.; Hong, X.*; Xia, J. –B.* Org. Lett. 2019, 21, 1226–1231.
52*. Engineered Cytochrome c–Catalyzed Lactone–Carbene B–H Insertion
Chen, K.; Huang, X.; Zhang, S. –Q.; Zhou, A. Z.; Kan, S. B. J.; Hong, X.*; Arnold, F. H.* Synlett 2019, 30, 378–382.
51*. Enantioselective Intramolecular Desymmetric α–Addition of Cyclohexanone to Propiolamide Catalyzed by Sodium L–Prolinate
Li, B. –L.; Gao, W. –Y.; Li, H.; Zhang, S. –Q.; Han, X. –Q..; Lu, J.; Liang, R. –X.; Hong, X.*; Jia, Y. –X.* Chin. J. Chem. 2019, 37, 63–70.
50*. Understanding the Axial Chirality Control of Quinidine–derived Ammonium Cation–directed O–Alkylation: A Computational Study
Li, H.; Fan, W.*; Hong, X.* Org. Biomol. Chem. 2019, 17, 1916–1923.
49* Cu/Chiral Phosphoric Acid–Catalyzed Asymmetric Three–Component Radical–Initiated 1,2–Dicarbofunctionalization of Alkenes
Lin, J. –S.; Li, T. –T.; Liu, J. –R.; Jiao, G. –Y.; Gu, Q. –S.; Cheng, J. –T.; Guo, Y. –L.; Hong, X.*; Liu, X. –Y.* J. Am. Chem. Soc. 2019, 141, 1074–1083.
48* Stepwise versus Concerted Reductive Elimination Mechanisms in the Carbon–Iodide Bond Formation of (DPEphos)RhMeI2 Complex
Yu, J. –L.; Zhang, S. –Q.; Hong, X.* Organometallics 2018, 37, 4711–4719.
47* Stereoretentive C(sp3)–S Cross–Coupling
Zhu, F.; Miller, E.; Zhang, S. –Q.; Yi, D.; O’Neill, S.; Hong, X.*; Walczak, M. A.* J. Am. Chem. Soc. 2018, 140, 18140–18150.
46*. Palladium–Catalyzed Decarbonylative Borylation of Carboxylic Acids: Tuning Reaction Selectivity by Computation
Liu, C.; Ji, C. –L.; Hong, X.*; Szostak, M.* Angew. Chem., Int. Ed. 2018, 57, 16721–16726.
45*. Alternate Heme Ligation Steers Activity and Selectivity in Engineered Cytochrome P450–Catalyzed Carbene–Transfer Reactions
Chen, K; Zhang, S. –Q.; Brandenberg, O. F.; Hong, X.*; Arnold, F. H.* J. Am. Chem. Soc. 2018, 140, 16402–16407.
44*. N–Heterocyclic Carbene–Cu–Catalyzed Enantioselective Allenyl Conjugate Addition
Chong, Q. –L.; Zhang, S. –Q.; Cheng, F. –C.; Wang, J. –P.; Hong, X.*; Meng, F.* Org. Lett. 2018, 20, 6896–6900.
43*. Copper–Catalyzed Enantioselective Hydroboration of 1,1–Disubstituted Alkenes: Method Development, Applications and Mechanistic Studies
Wen, L.; Cheng, F.; Li, H.; Zhang, S. –Q.; Hong, X.*; Meng, F.* Asian J. Org. Chem. 2018, 7, 103–106.
42*. Mechanism and Origins of Chemo– and Regioselectivities of Pd–Catalyzed Intermolecular σ–Bond Exchange between Benzocyclobutenones and Silacyclobutanes: A Computational Study
Xu, Z. –Y.;Zhang, S. –Q.; Liu, J. –R.; Chen, P. –P.; Li, X.; Yu, H. –Z.; Hong, X.*; Fu, Y.* Organometallics, 2018, 37, 592–602.
41*. Computational Studies of Cinchona Alkaloid–catalyzed Asymmetric Michael Additions
Li, H.; Hong, X.* Chin. Chem. Lett. 2018, 29, 1585–1590.
40*. Palladium–Catalyzed Selective Five–Fold Cascade Arylation of the 12–Vertex Monocarborane Anion by B–H Activation
Lin, F.; Yu, J. –L.; Shen, Y.; Zhang, S. –Q.; Spingler, B.; Liu, J.; Hong, X.*; Duttwyler, S.* J. Am. Chem. Soc. 2018, 140, 13798–13807.
39*. Catalytic Asymmetric Synthesis of Chiral Trisubstituted Heteroaromatic Allenes from 1,3–Enynes
Yu, S.; Sang, H. L.; Zhang, S. –Q.; Hong, X.*; Ge, S.* Commun. Chem. 2018, 1, 64.
38*. Rhodium–Catalyzed Asymmetric Addition of Organoboronic Acids to Aldimines Using Chiral Spiro Monophosphite–Olefin Ligands: Method Development and Mechanistic Studies
Shan, H.; Zhou, Q.; Yu, J. –L.; Zhang, S. –Q.; Hong, X.*; Lin, X.* J. Org. Chem. 2018, 83, 11873–11885.
37*. Computational Study of Mechanism and Thermodynamics of Ni/IPr–Catalyzed Amidation of Esters
Ji, C. –L.; Xie, P. –P.; Hong, X.* Molecules 2018, 23, 2681.
36. Role of Subsurface Oxygen on Cu Surfaces for CO2 Electrochemical Reduction
Fields, M.; Hong, X; Nørskov, J. K.; Chan, K.* J. Phys. Chem. C 2018, 122, 16209–16215.
35*. Computational studies on Ni–catalyzed C−O bond activation of esters
Li, X.; Hong, X* J. Organomet. Chem. 2018, 864, 68–80.
34*. Copper–Catalyzed Enantioselective Markovnikov Protoboration of α–Olefins Enabled by a Buttressed NHC Ligand
Cai, Y.; Yang, X. –T.; Zhang, S. –Q.; Li, F.; Li, Y. –Q.; Ruan, L. –X.; Hong, X.*; Shi, S. –L.* Angew. Chem., Int. Ed. 2018, 57, 1376–1380.
33. Experimental–Computational Synergy for Selective Pd(II)–Catalyzed C–H Activation of Aryl and Alkyl Groups
Yang, Y. –F.; Hong, X.; Yu, J. –Q.; Houk, K. N. Acc. Chem. Res. 2017, 50, 2853–2860.
32*. Factors Controlling the Reactivity and Chemoselectivity of Resonance Destabilized Amides in Ni–Catalyzed Decarbonylative and Nondecarbonylative Suzuki–Miyaura Coupling
Ji, C. –L.; Hong, X.* J. Am. Chem. Soc. 2017, 139, 15522–15529.
31*. Mechanism and Origins of Ligand–Controlled Stereoselectivity of Ni–Catalyzed Suzuki–Miyaura Coupling with Benzylic Esters: A Computational Study
Zhang, S. –Q.; Taylor, B. L. H.; Ji, C. –L.; Gao, Y.; Harris, M. R.; Hanna, L. E.; Jarvo, E. R.*; Houk, K. N.*; Hong, X.* J. Am. Chem. Soc. 2017, 139, 12994–13005.
30*. N–heterocyclic Carbene–Cu–Catalyzed Enantioselective Conjugate Additions with Alkenylboronic Esters as Nucleophiles
Chen, Q.; Yue, Z.; Zhang, S. –Q.; Ji, C. –L.; Cheng, F.; Zhang, H.; Hong, X.*; Meng, F.* ACS Catal. 2017, 7, 5693–5698.
29*. Mechanisms and Origins of Chemo– and Regioselectivities of Ru(II)–Catalyzed Decarboxylative C–H Alkenylation of Aryl Carboxylic Acids with Alkynes: A Computational Study
Yu, J. –L.; Zhang, S. –Q.; Hong, X.* J. Am. Chem. Soc. 2017, 139, 7224–7243.
28*. (2+1)–Cycloaddition Reactions Give Further Evidence of the Nitrenium–like Character of 1–Aza–2–azoniaallene Salts
Al–Bataineh, N.; Houk, K. N.; Brewer, M.*; Hong, X.* J. Org. Chem. 2017, 82, 4001–4005.
27*. The Mechanism and Regioselectivities of (NHC)nickel(ii)hydride–catalyzed Cycloisomerization of Dienes: A Computational Study
Gao, Y.; Houk, K. N.; Ho, C. –Y.*; Hong, X.* Org. Biomol. Chem. 2017, 15, 7131–7139.
26*. Ni–mediated C–N Activation of Amides and Derived Catalytic Transformations
Gao, Y.; Ji, C.; Hong, X.* Sci. China Chem. 2017, 60,1413–1424.
25. The Origins of Dramatic Differences in Five–Membered vs Six–Membered Chelation of Pd(II) on Efficiency of C(sp3)–H Bond Activation
Yang, Y. –F.; Chen, G.; Hong, X.; Yu, J. –Q.*; Houk, K. N.* J. Am. Chem. Soc. 2017, 139, 8514–8521.
24. Palladium–Catalyzed Suzuki–Miyaura Coupling of Aryl Esters
Halima, T.; Zhang, W.; Yalaoui, I.; Hong, X.; Yang, Y. –F.; Houk, K. N.*; Newman, S. G.* J. Am. Chem. Soc. 2017, 139, 1311–1318.
23. Understanding Trends in Electrochemical Carbon Dioxide Reduction Rates
Liu, X. –Y.; Xiao, J. –P.; Peng, H. –J.; Hong, X.; Chan. K.; Nørskov, J. K.* Nat. Commun. 2017, 8, 15438.
Publications before ZJU
22. Distortion–Controlled Reactivity and Molecular Dynamics of Dehydro–Diels–Alder Reactions
Yu, P.; Yang, Z.; Liang, Y.; Hong, X.; Li, Y.; Houk, K. N.* J. Am. Chem. Soc. 2016, 138, 8247–8252.
21. How Doped MoS2 Breaks Transition–Metal Scaling Relations for CO2 Electrochemical Reduction
Hong, X.; Chan, K.; Tsai, C.; Nørskov, J. K.* ACS Catal. 2016, 6, 4428–4437.
20. Ligand–accelerated Enantioselective Methylene C(sp(3))–H Bond Activation
Chen, G.; Gong, W.; Zhuang, Z.; Andra, M. S.; Chen, Y. –Q.; Hong, X.; Yang, Y. –F.; Liu, T.; Houk, K. N.*; Yu, J. –Q.* Science 2016, 353, 1023–1027.
19. Nickel–Catalyzed Activation of Acyl C−O Bonds of Methyl Esters
Hie, L.; Fine Nathel, N. F.; Hong, X.; Yang, Y.–F.; Houk, K. N.*; Garg, N. K.* Angew. Chem. Int. Ed. 2016, 55, 2810–2814.
18. Conversion of Amides into Esters by the Nickel–Catalyzed Activation of Amide C–N Bonds
Garg, N.* ; Houk, K. N.*; Baker, E. L.; Nathel, N. F.; Hie, L.; Hong, X.; Liu, P.; Shah, T. K.; Yang, Y.–F. Synlett. 2016, 27, A3.
17. Mechanistic Insights into Two–Phase Radical C–H Arylations
Baxter, R. D.; Liang, Y.; Hong, X.; Brown, T. A.; Zare, R. N.*; Houk, K. N.*; Baran, P. S.*; Blackmond, D. G.* ACS Cent. Sci. 2015, 1, 456–462.
16. Ligand–Controlled Diastereoselective 1,3–Dipolar Cycloadditions of Azomethine Ylides with Methacrylonitrile
Walton, M. C.; Yang, Y.–F.; Hong, X.; Houk, K. N.*; Overman, L. E.* Org. Lett. 2015, 17, 6166–6169.
15. Conversion of Amides to Esters by the Nickel–Catalysed Activation of Amide C–N Bonds
Hie, L.; Fine Nathel, N. F.; Shah, T. K.; Baker, E. L.; Hong, X.; Yang, Y.–F.; Liu, P.; Houk, K. N.*; Garg, N. K.* Nature 2015, 524, 79–83.
14. Computational Exploration of Mechanism and Selectivities of (NHC)Nickel(II)hydride–Catalyzed Hydroalkenylations of Styrene with α–Olefins
Hong, X.; Wang, J.; Yang, Y. –F.; He, L.; Ho, C. –Y.*; Houk, K. N.* ACS Catal. 2015, 5, 5545–5555.
13. Mechanism and Dynamics of Intramolecular C–H Insertion Reactions of 1–Aza–2–azoniaallenes Salts
Hong, X.; Bercovici, D.; Yang, Z.; Al–Bataineh, N.; Srinivasan, R.; Dhakal, R. C.; Houk, K. N.*; Brewer, M.* J. Am. Chem. Soc. 2015, 137, 9100–9107.
12. Iodoarene–Catalyzed Stereospecific Intramolecular sp3 C–H Amination: Reaction Development and Mechanistic Insights
Zhu, C.; Liang, Y.; Hong, X.; Sun, H.; Sun, W. –Y.; Houk, K. N.; Shi, Z. J. Am. Chem. Soc. 2015, 137, 7564–7567.
11. [Ni(NHC)]–catalyzed Cycloaddition of Diynes and Tropone: Apparent Enone Cycloaddition Involving an 8π Insertion
Kumar, P.; Thakur, A.; Hong, X.; Houk, K. N.*; Louie, J.* J. Am. Chem. Soc. 2014, 136, 17844–17851.
10. Reactivity and Chemoselectivity of Allenes in Rh (I)–Catalyzed Intermolecular (5+2) Cycloadditions with Vinylcyclopropanes: Allene–Mediated Rhodacycle Formation Can Poison Rh (I)–Catalyzed Cycloadditions
Hong, X.; Stevens, M. C.; Liu, P.; Wender, P. A.*; Houk, K. N.* J. Am. Chem. Soc. 2014, 136, 17273–17283.
9. Why Alkynyl Substituents Dramatically Accelerate Hexadehydro–Diels–Alder (HDDA) Reactions: Stepwise Mechanisms of HDDA Cycloadditions
Liang, Y.; Hong, X.; Yu, P.; Houk, K. N.* Org. Lett. 2014, 16. 5702–5705.
8. Mechanism, Reactivity, and Selectivity of Nickel–Catalyzed [4+4+2] Cycloadditions of Dienes and Alkynes
Hong, X.; Holte, D.; Götz, D. C. C. G.; Baran, P. S.*; Houk, K. N.* J. Org. Chem. 2014, 79, 12177–12184.
7. Mechanism and Selectivity of N–triflylphosphoramide Catalyzed (3++2) Cycloaddition between Hydrazones and Alkenes
Hong, X.; Küçük, H. B.; Maji, M. S.; Yang. Y. –F.; Rueping, M.*; Houk, K. N.* J. Am. Chem. Soc. 2014, 136, 13769–13780.
6. How Tethers Control the Chemo– and Regioselectivities of Intramolecular Cycloadditions between Aryl–1–Aza–2–Azoniaallenes and Alkenes
Hong, X.; Liang, Y.; Brewer, M.*; Houk, K. N.* Org. Lett. 2014, 16. 4260–4263.
5. Mechanisms and Origins of Switchable Chemoselectivity of Ni–Catalyzed C(aryl)–O and C(acyl)–O Activation of Aryl Esters with Phosphine Ligands
Hong, X.; Liang, Y.; Houk, K. N.* J. Am. Chem. Soc. 2014, 136, 2017–2025.
4. Distortion–Accelerated Cycloadditions and Strain–Release–Promoted Cycloreversions in the Organocatalytic Carbonyl–Olefin Metathesis
Hong, X.; Liang, Y.; Griffith, A. K.; Lambert, T. H.; Houk, K. N.* Chem. Sci. 2014, 5, 471–475.
3. Mechanism and Origins of Selectivity in Ru(II)–Catalyzed Intramolecular (5+2) Cycloadditions and Ene Reactions of Vinylcyclopropanes and Alkynes from Density Functional Theory
Hong, X.; Trost, B. M.*; Houk, K. N.* J. Am. Chem. Soc. 2013, 135, 6588–6600.
2. Mechanism and Origins of Ligand–Controlled Selectivities in [Ni(NHC)]–Catalyzed Intramolecular (5+2) Cycloadditions and Homo–Ene Reactions: A Theoretical Study
Hong, X.; Liu, P.; Houk, K. N.* J. Am. Chem. Soc. 2013, 135, 1456–1462.
1. Nickel–catalyzed Amination of Aryl Carbamates and Sequential Site–selective Cross–couplings
Mesganaw, T.; Silberstein, A. L.; Ramgren, S. D.; Nathel, N. F. F.; Hong, X.; Liu, P.; Garg, N. K.* Chem. Sci. 2011, 2, 1766–1771.