1. 已发表文章(部分文章)
2024
[38] Anisotropic topological scaffolds synergizing non-invasive wireless magnetic stimulation for accelerating long-distance peripheral nerve regeneration. Chemical Engineering Journal Volume 496, 2024, 153809 (通讯作者)
[37] Application of magnetism in tissue regeneration: recent progress and future prospects. Regenerative Biomaterials, 2024, 11, rbae048 (通讯作者, CSBM会刊)
[36] IKVAV functionalized oriented PCL/Fe3O4 scaffolds for magnetically modulating DRG growth behavior. Colloids and Surfaces B: Biointerfaces 239 (2024) 113967 (通讯作者)
[35] Biomimetic-inspired piezoelectric ovalbumin/BaTiO3 scaffolds synergizing with anisotropic topology for modulating Schwann cell and DRG behavior. International Journal of Biological Macromolecules 271 (2024) 132394 (通讯作者)
[34] Cell culture on suspended fiber for tissue regeneration: A review. International Journal of Biological Macromolecules, 2024,268,131827 (通讯作者)
[33] Development of ovalbumin implants with different spatial configurations for treatment of peripheral nerve injury, Bioactive Materials, 2024, 35, 401-415.(通讯作者)
2023
[32] Silk-protein- based gradient hydrogels with multimode reprogrammable shape changes for biointegrated devices, PNAS, 2023.08.07
[31] Piezoelectric materials for neuroregeneration: a review.Biomater. Sci., 2023, 11,7296(通讯作者)
[30] Injectable Near-Infrared Photothermal Responsive Drug-Loaded Multiwalled Carbon Nanotube Hydrogels for Spinal Cord Injury Repair. ACS Appl. Nano Mater. 2023, 6, 20469−20484(通讯作者)
[29] Surface topologized ovalbumin scaffolds containing YIGSR peptides for modulating Schwann cell behavior. International Journal of Biological Macromolecules 253 (2023) 127015 (通讯作者)
[28] Photothermal responsive cell-laden PNIPAM self-rolling hydrogel containing dopamine enhanced MWCNTs for peripheral nerve regeneration. Composites Part B 254 (2023) 110551
[27] 光热响应性水凝胶组织工程移植物研究进展, 中国材料进展(特约专栏),2023,42,7. (SCDC,通讯作者)
[26] Multi-scale, multi-level anisotropic silk fibroin/metformin scaffolds for repair of peripheral nerve injury International Journal of Biological Macromolecules 246 (2023) 125518 (通讯作者)
2022
[25] Anisotropic chitosan micropatterning containing metformin functionalized calcium titanate (CaTiO3) nanoparticles for regulating dorsal root ganglion behavior. Surf Interfaces. 2022;35. (通讯作者)
[24] YR/DFO@DCNT functionalized anisotropic micro/nano composite topography scaffolds for accelerating long-distance peripheral nerve regeneration. Compos Part B-Eng. 2022;246. (通讯作者)
[23] Development of a polyacrylamide/chitosan composite hydrogel conduit containing synergistic cues of elasticity and topographies for promoting peripheral nerve regeneration. Biomater Sci-Uk. 2022;10:4915-32. (通讯作者)
[22] Electrospinning porcine decellularized nerve matrix scaffold for peripheral nerve regeneration. Int J Biol Macromol. 2022;209:1867-81. (通讯作者)
[21] Co-culture of Schwann cells and endothelial cells for synergistically regulating dorsal root ganglion behavior on chitosan-based anisotropic topology for peripheral nerve regeneration. Burns Trauma. 2022;10. (通讯作者)
2021
[20] Bionic microenvironment-inspired synergistic effect of anisotropic micro-nanocomposite topology and biology cues on peripheral nerve regeneration. Sci Adv. 2021;7.
[19] Soft hydrogel promotes dorsal root ganglion by upregulating gene expression of Ntn4 and Unc5B. Colloid Surface B. 2021;199. (通讯作者)
2020
[18] Construction of injectable silk fibroin/polydopamine hydrogel for treatment of spinal cord injury. Chem Eng J. 2020;399. (通讯作者)
[17] Construction of Dual-Biofunctionalized Chitosan/Collagen Scaffolds for Simultaneous Neovascularization and Nerve Regeneration. Research-China. 2020;2020.
[16] Anisotropic ridge/groove microstructure for regulating morphology and biological function of Schwann cells. Appl Mater Today. 2020;18.
2019
[15] Construction of Biofunctionalized Anisotropic Hydrogel Micropatterns and Their Effect on Schwann Cell Behavior in Peripheral Nerve Regeneration. Acs Appl Mater Inter. 2019;11:37397-410.
[14] PAM/GO/gel/SA composite hydrogel conduit with bioactivity for repairing peripheral nerve injury. J Biomed Mater Res A. 2019;107:1273-83. (通讯作者)
[13] Hierarchically aligned gradient collagen micropatterns for rapidly screening Schwann cells behavior. Colloid Surface B. 2019;176:341-51.
2018
[12] Spatially featured porous chitosan conduits with micropatterned inner wall and seamless sidewall for bridging peripheral nerve regeneration. Carbohyd Polym. 2018;194:225-35.
[11] Construction of polyacrylamide/graphene oxide/gelatin/sodium alginate composite hydrogel with bioactivity for promoting Schwann cells growth. J Biomed Mater Res A. 2018;106:1951-64. (通讯作者)
2017
[10] Nanoengineered porous chitosan/CaTiO3 hybrid scaffolds for accelerating Schwann cells growth in peripheral nerve regeneration. Colloid Surface B. 2017;158:57-67.
[9] Nerve growth factor loaded heparin/chitosan scaffolds for accelerating peripheral nerve regeneration. Carbohyd Polym. 2017;171:39-49.
[8] Controlled release of nerve growth factors incorporated in polyacrylamide/graphene oxide hydrogel and their effects on Schwann cells. J Control Release. 2017;259:E38-E. (通讯作者)
2016
[7] Preparation of graphene oxide/polyacrylamide composite hydrogel and its effect on Schwann cells attachment and proliferation. Colloid Surface B. 2016;143:547-56.
2015
[6] Tailoring of chitosan scaffolds with heparin and gamma-aminopropyltriethoxysilane for promoting peripheral nerve regeneration. Colloid Surface B. 2015;134:413-22.
[5] Fabrication and characterization of polyacrylamide/silk fibroin hydrogels for peripheral nerve regeneration. J Biomat Sci-Polym E. 2015;26:899-916.
2014
[4] Porous chitosan scaffolds with surface micropatterning and inner porosity and their effects on Schwann cells. Biomaterials. 2014;35:8503-13.
[3] Regulating Schwann Cells Growth by Chitosan Micropatterning for Peripheral Nerve Regeneration In Vitro. Macromol Biosci. 2014;14:1067-75.
[2] Effect of silanization on chitosan porous scaffolds for peripheral nerve regeneration. Carbohyd Polym. 2014;101:718-26.
2013
[1] Responses of platelets and endothelial cells to heparin/fibronectin complex on titanium: In situ investigation by quartz crystal microbalance with dissipation and immunochemistry. J Biosci Bioeng. 2013;116:235-45.
2. 已授权专利
[3] 非接触式细胞共培养器及制造方法和细胞培养方法, 2022授权;
[2] 具有光热响应性的可控药物释放的仿生组织工程支架制备方法,2022授权;
[1] 用于构建3D组织工程移植物的智能响应水凝胶及其制备方法和应用,2022授权;