6449
当前位置: 首页   >  成果及论文
成果及论文

1.       Dong, G.* 通讯作者Lin, L.R., Xu, L. Y., Li, E. M. (2020) Reaction mechanism of lysyl oxidase-like 2 (LOXL2) studied by computational methods.Journal of Inorganic Biochemistry, DOI: 10.1016/j.jinorgbio.2020.111204

2.      Jafari, S., Ryde, U., Fouda, A. E. A., Alavi, F. S., Dong, G., & Irani, M. (2020). Quantum Mechanics/Molecular Mechanics Study of the Reaction Mechanism of Glyoxalase I. Inorganic Chemistry59(4), 2594-2603.

3.      Larsson, E. D., Dong, G., Veryazov, V., Ryde, U., & Hedegård, E. D. (2020). Is density functional theory accurate for lytic polysaccharide monooxygenase enzymes?. Dalton Transactions49(5), 1501-1512.

4.      Zou, X., Wen, G., Hu, R., Dong, G., Zhang, C., Zhang, W., Huang, H. & Dang, W. (2020). An Insight into the Excitation States of Small Molecular Semiconductor Y6. Molecules25(18), 4118.

5.      Ma, M., Ji, Q., Yin, L., Lin, K., Wen, G., Xu, Y., Zhang N., Dong, G., Yu, L., Zhang, W., & Xu, X. (2020). Core unit engineering of star-shaped acceptor polymers for all-polymer solar cells. Solar Energy207, 199-208.

6.      Dong, G., Quan ManhPhungKristine Perloot, & Ryde, U. (2018) Reaction mechanism of [NiFe] hydrogenase studied by computational methods.  Inorganic Chemistry, 57, 15289-15298

7.      Dong, G., & Ryde, U. (2018) Reaction mechanism of formate dehydrogenase studied by computational methods. JBIC Journal of Biological Inorganic Chemistry, 23,1243-1254

8.      Dong, G., Ryde, U., Jensen, H. J. A. & Hedegård, E. D. (2018) Exploration of H2 binding to the [NiFe] hydrogenase active site with multiconfigurational density functional theory. Physical Chemistry Chemical Physics, 20, 794-801.

9.      Dong, G.*(通讯作者), Cao, L. & Ryde, U. (2018) Insight into the reaction mechanism of lipoyl synthase: A QM/MM study. JBIC Journal of Biological Inorganic Chemistry, 23, 221-229.   

10.  Dong, G., Phung, Q. M., Hallaert, S. D., Pierloot, K., & Ryde, U. (2017). H2 binding to the active site of [NiFe] hydrogenase studied by multiconfigurational and coupled-cluster methods. Physical Chemistry Chemical Physics, 19, 10590-10601.

11.  Dong, G., & Ryde, U. (2017). Effect of the protein ligand in DMSO reductase studied by computational methods. Journal of Inorganic Biochemistry, 171, 45-51.

12.  Dong, G., *(通讯作者) & Ryde, U. (2016). O2 Activation in Salicylate 1, 2-Dioxygenase: A QM/MM Study Reveals the Role of His162. Inorganic Chemistry, 55, 11727-11735.

13.  Ignjatović, M. M., Caldararu, O., Dong, G., Muñoz-Gutierrez, C., Adasme- Carreño, F., & Ryde, U. (2016). Binding-affinity predictions of HSP90 in the D3R Grand Challenge 2015 with docking, MM/GBSA, QM/MM, and free-energy simulations. Journal of Computer-Aided Molecular Design, 30, 707-730.

14.  Wang, B., Lu, J., Dubey, K. D., Dong, G., Lai, W., & Shaik, S. (2016). How do Enzymes Utilize Reactive OH Radicals? Lessons from Nonheme HppE and Fenton Systems. Journal of the American Chemical Society, 138, 8489-8496.

15.  Dong, G., Lu, J., & Lai, W. (2016). Insights into the mechanism of aromatic ring cleavage of noncatecholic compound 2-aminophenol by aminophenol dioxygenase: a quantum mechanics/molecular mechanics study. ACS Catalysis, 6, 3796-3803.

16.  Dong, G., & Ryde, U. (2016). Protonation states of intermediates in the reaction mechanism of [NiFe] hydrogenase studied by computational methods. JBIC Journal of Biological Inorganic Chemistry, 21, 383-394.

17.  Cao, L., Dong, G., & Lai, W. (2015). Reaction Mechanism of Cobalt-Substituted Homoprotocatechuate 2, 3-Dioxygenase: A QM/MM Study. The Journal of Physical Chemistry B, 119, 4608-4616.

18.  Dong, G., & Lai, W. (2014). Reaction mechanism of homoprotocatechuate 2, 3- dioxygenase with 4-nitrocatechol: Implications for the role of substrate. The Journal of Physical Chemistry B, 118, 1791-1798.

19.  Dong, G., Shaik, S., & Lai, W. (2013). Oxygen activation by homoprotocatechuate 2, 3-dioxygenase: a QM/MM study reveals the key intermediates in the activation cycle. Chemical Science, 4, 3624-3635.

20.  Lai, W., Cao, R., Dong, G., Shaik, S., Yao, J., & Chen, H. (2012). Why Is Cobalt the Best Transition Metal in Transition-Metal Hangman Corroles for O–O Bond Formation during Water Oxidation? The journal of physical chemistry letters, 3, 2315-2319.

21.  Ryde, U., Dong, G., Li, J., Feldt, M., & Mata, R. A. (2016). Computational Studies of Molybdenum and Tungsten Enzymes. Molybdenum and Tungsten Enzymes: Spectroscopic and Theoretical Investigations, 275-321. (book)