Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Copper-catalysed amination of alkyl iodides enabled by halogen-atom transfer

Abstract

Despite the fact that nucleophilic displacement (SN2) of alkyl halides with nitrogen nucleophiles is one of the first reactions introduced in organic chemistry teaching, its practical utilization is largely limited to unhindered (primary) or activated (α-carbonyl, benzylic) substrates. Here, we demonstrate an alternative amination strategy where alkyl iodides are used as radical precursors instead of electrophiles. Use of α-aminoalkyl radicals enables the efficient conversion of the iodides into the corresponding alkyl radical by halogen-atom transfer, while copper catalysis assembles the sp3 C–N bonds at room temperature. The process provides SN2-like programmability, and application in late-stage functionalization of several densely functionalized pharmaceuticals demonstrates its utility in the preparation of valuable N-alkylated drug analogues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Relevance and assembly of sp3 C–N bonds.
Fig. 2: Development of a coupling between alkyl iodides and N-nucleophiles by merging XAT and copper catalysis.
Fig. 3: Scope of the N-nucleophilic partner for the amination of iodide 1.
Fig. 4: Scope of the secondary alkyl iodide partner for the amination with N-nucleophile 2.
Fig. 5: Late-stage N-alkylations of complex and biologically active materials.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information or from the authors upon reasonable request.

References

  1. Ricci, A. Amino Group Chemistry: From Synthesis to the Life Sciences (Wiley-VCH, (2008).

  2. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Brown, D. G. & Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Trowbridge, A., Walton, S. M. & Gaunt, M. J. New strategies for the transition-metal catalyzed synthesis of aliphatic amines. Chem. Rev. 120, 2613–2692 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Kaga, A. & Chiba, S. Engaging radicals in transition metal-catalyzed cross-coupling with alkyl electrophiles: recent advances. ACS Catal. 7, 4697–4706 (2017).

    Article  CAS  Google Scholar 

  6. Afanasyev, O. I., Kuchuk, E., Usanov, D. L. & Chusov, D. Reductive amination in the synthesis of pharmaceuticals. Chem. Rev. 119, 11857–11911 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Kumar, R., Flodén, N. J., Whitehurst, W. G. & Gaunt, M. J. A general carbonyl alkylative amination for tertiary amine synthesis. Nature 581, 415–420 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hossain, A., Bhattacharyya, A. & Reiser, O. Copper’s rapid ascent in visible-light photoredox catalysis. Science 364, eaav9713 (2019).

    Article  PubMed  CAS  Google Scholar 

  9. Kochi, J. K. & Subramanian, R. V. Kinetics of electron-transfer oxidation of alkyl radicals by copper(ii) complexes. J. Am. Chem. Soc. 87, 4855–4866 (1965).

    Article  CAS  Google Scholar 

  10. Casitas, A. & Ribas, X. The role of organometallic copper(iii) complexes in homogeneous catalysis. Chem. Sci. 4, 2301–2318 (2013).

    Article  CAS  Google Scholar 

  11. Zhu, X. & Chiba, S. Copper-catalyzed oxidative carbon–heteroatom bond formation: a recent update. Chem. Soc. Rev. 45, 4504–4523 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Jacobson, R. R., Tyeklár, Z. & Karlin, K. D. Reaction of organic halides with [CuI(TMPA)CH3CN]PF6. Inorg. Chim. Acta 181, 111–118 (1991).

    Article  CAS  Google Scholar 

  13. Cheng, L.-J. & Mankad, N. P. C–C and C–X coupling reactions of unactivated alkyl electrophiles using copper catalysis. Chem. Soc. Rev. 49, 8036–8064 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Matsumoto, Y. et al. Amino acid Schiff base bearing benzophenone imine as a platform for highly congested unnatural α-amino acid synthesis. J. Am. Chem. Soc. 142, 8498–8505 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Ishida, S., Takeuchi, K., Taniyama, N., Sunada, Y. & Nishikata, T. Copper-catalyzed amination of congested and functionalized α-bromocarboxamides with either amines or ammonia at room temperature. Angew. Chem. Int. Ed. 56, 11610–11614 (2017).

    Article  CAS  Google Scholar 

  16. Bissember, A. C., Lundgren, R. J., Creutz, S. E., Peters, J. C. & Fu, G. C. Transition-metal-catalyzed alkylations of amines with alkyl halides: photoinduced, copper-catalyzed couplings of carbazoles. Angew. Chem. Int. Ed. 52, 5129–5133 (2013).

    Article  CAS  Google Scholar 

  17. Kainz, Q. M. et al. Asymmetric copper-catalyzed C–N cross-couplings induced by visible light. Science 351, 681–684 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Creutz, S. E., Lotito, K. J., Fu, G. C. & Peters, J. C. Photoinduced Ullmann C–N coupling: demonstrating the viability of a radical pathway. Science 338, 647–651 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Do, H.-Q., Bachman, S., Bissember, A. C., Peters, J. C. & Fu, G. C. Photoinduced, copper-catalyzed alkylation of amides with unactivated secondary alkyl halides at room temperature. J. Am. Chem. Soc. 136, 2162–2167 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Mao, R., Frey, A., Balon, J. & Hu, X. Decarboxylative C(sp3)–N cross-coupling via synergetic photoredox and copper catalysis. Nat. Catal. 1, 120–126 (2018).

    Article  CAS  Google Scholar 

  21. Liang, Y., Zhang, X. & MacMillan, D. W. C. Decarboxylative sp3 C–N coupling via dual copper and photoredox catalysis. Nature 559, 83–88 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nguyen, V. T. et al. Visible-light-enabled direct decarboxylative N-alkylation. Angew. Chem. Int. Ed. 59, 7921–7927 (2020).

    Article  CAS  Google Scholar 

  23. Constantin, T. et al. Aminoalkyl radicals as halogen-atom transfer agents for activation of alkyl and aryl halides. Science 367, 1021–1026 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Constantin, T. et al. A case of chain propagation: α-aminoalkyl radicals as initiators for aryl radical chemistry. Chem. Sci. 11, 12822–12828 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Neff, R. K. et al. Generation of halomethyl radicals by halogen atom abstraction and their addition reactions with alkenes. J. Am. Chem. Soc. 141, 16643–16650 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Su, Y. L. et al. α-Amino radical-mediated diverse difunctionalization of alkenes: construction of C−C, C−N and C−S bonds. ACS Catal. 10, 13682–13687 (2020).

    Article  CAS  Google Scholar 

  27. Tedder, J. M. The importance of polarity, bond strength and steric effects in determining the site of attack and the rate of free radical substitution in aliphatic compounds. Tetrahedron 38, 313–329 (1982).

    Article  CAS  Google Scholar 

  28. Kharasch, M. S. & Sosnovsky, G. The reactions of t-butyl perbenzoate and olefins—a stereospecific reaction. J. Am. Chem. Soc. 80, 756–756 (1958).

    Article  CAS  Google Scholar 

  29. Wayner, D. D. M., Dannenberg, J. J. & Griller, D. Oxidation potentials of α-aminoalkyl radicals: bond dissociation energies for related radical cations. Chem. Phys. Lett. 131, 189–191 (1986).

    Article  CAS  Google Scholar 

  30. Lalevée, J., Allonas, X. & Fouassier, J.-P. N−H and α(C−H) bond dissociation enthalpies of aliphatic amines. J. Am. Chem. Soc. 124, 9613–9621 (2002).

    Article  PubMed  CAS  Google Scholar 

  31. Tran, B. L., Li, B., Driess, M. & Hartwig, J. F. Copper-catalyzed intermolecular amidation and imidation of unactivated alkanes. J. Am. Chem. Soc. 136, 2555–2563 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, C.-S., Wu, X.-F., Dixneuf, P. H. & Soulé, J.-F. Copper-catalyzed oxidative dehydrogenative C(sp3)−H bond amination of (cyclo)alkanes using NH-heterocycles as amine sources. ChemSusChem 10, 3075–3082 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Chatgilialoglu, C., Ferreri, C., Landais, Y. & Timokhin, V. I. Thirty years of (TMS)3SiH: a milestone in radical-based synthetic chemistry. Chem. Rev. 118, 6516–6572 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, P., Le, C. C. & MacMillan, D. W. C. Silyl radical activation of alkyl halides in metallaphotoredox catalysis: a unique pathway for cross-electrophile coupling. J. Am. Chem. Soc. 138, 8084–8087 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stein, S. E. & Brown, R. L. Prediction of carbon–hydrogen bond dissociation energies for polycyclic aromatic hydrocarbons of arbitrary size. J. Am. Chem. Soc. 113, 787–793 (1991).

    Article  CAS  Google Scholar 

  36. Zhu, X.-Q. et al. Determination of the C4–H bond dissociation energies of NADH models and their radical cations in acetonitrile. Chem. Eur. J. 9, 871–880 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Wiese, S. et al. Catalytic C–H amination with unactivated amines through copper(ii) amides. Angew. Chem. Int. Ed. 49, 8850–8855 (2010).

    Article  CAS  Google Scholar 

  38. Ahn, J. M., Ratani, T. S., Hannoun, K. I., Fu, G. C. & Peters, J. C. Photoinduced, copper-catalyzed alkylation of amines: a mechanistic study of the cross-coupling of carbazole with alkyl bromides. J. Am. Chem. Soc. 139, 12716–12723 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, M. et al. [11C]enzastaurin, the first design and radiosynthesis of a new potential PET agent for imaging of protein kinase C. Bioorg. Med. Chem. Lett. 21, 1649–1653 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, Y. et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 395, 1569–1578 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mao, R., Balon, J. & Hu, X. Cross-coupling of alkyl redox-active esters with benzophenone imines: tandem photoredox and copper catalysis. Angew. Chem. Int. Ed. 57, 9501–9504 (2018).

    Article  CAS  Google Scholar 

  42. Peacock, D. M., Roos, C. B. & Hartwig, J. F. Palladium-catalyzed cross coupling of secondary and tertiary alkyl bromides with a nitrogen nucleophile. ACS Cent. Sci 2, 647–652 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carreira, E. M. & Fessard, T. C. Four-membered ring-containing spirocycles: synthetic strategies and opportunities. Chem. Rev. 114, 8257–8322 (2014).

    Article  CAS  Google Scholar 

  44. Lovering, F., Bikker, J. & Humblet, C. Escape from Flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.L. thanks EPSRC for a fellowship (EP/P004997/1) and a research grant (EP/T016019/1) and the European Research Council for a research grant (758427). We thank W. Ashworth, P. Gillespie and S. Wells for performing safety studies. We thank M. Johansson (AstraZeneca) for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

F.J. and D.L. designed the project and directed the work. B.G. and A.-L.B. performed all the synthetic and mechanistic experiments. J.J.D performed the scale-up experiments. All authors analysed the results and wrote the manuscript.

Corresponding authors

Correspondence to Fabio Juliá or Daniele Leonori.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Michael Doyle and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, discussion, Tables 1–8, Figs. 1–30 and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Górski, B., Barthelemy, AL., Douglas, J.J. et al. Copper-catalysed amination of alkyl iodides enabled by halogen-atom transfer. Nat Catal 4, 623–630 (2021). https://doi.org/10.1038/s41929-021-00652-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00652-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing