Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reductive alkyl–alkyl coupling from isolable nickel–alkyl complexes

Abstract

The selective cross-coupling of two alkyl electrophiles to construct complex molecules remains a challenge in organic synthesis1,2. Known reactions are optimized for specific electrophiles and are not amenable to interchangeably varying electrophilic substrates that are sourced from common alkyl building blocks, such as amines, carboxylic acids and halides3,4,5. These limitations restrict the types of alkyl substrate that can be modified and, ultimately, the chemical space that can be explored6. Here we report a general solution to these limitations that enables a combinatorial approach to alkyl–alkyl cross-coupling reactions. This methodology relies on the discovery of unusually persistent Ni(alkyl) complexes that can be formed directly by oxidative addition of alkyl halides, redox-active esters or pyridinium salts. The resulting alkyl complexes can be isolated or directly telescoped to couple with a second alkyl electrophile, which represent cross-selective reactions that were previously unknown. The utility of this synthetic capability is showcased in the rapid diversification of amino acids, natural products, pharmaceuticals and drug-like building blocks by various combinations of dehalogenative, decarboxylative or deaminative coupling. In addition to a robust scope, this work provides insights into the organometallic chemistry of synthetically relevant Ni(alkyl) complexes through crystallographic analysis, stereochemical probes and spectroscopic studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthetic approach, synthesis and properties of Ni–alkyl complexes.
Fig. 2: Reactivity of organonickel complexes.
Fig. 3: Application to complex molecules.
Fig. 4: Mechanistic studies.

Similar content being viewed by others

Data availability

All experimental data, analytical procedures, cell designs, copies of spectra and CIF data are available in Supplementary Information.

References

  1. Tasker, S. Z., Standley, E. A. & Jamison, T. F. Recent advances in homogeneous nickel catalysis. Nature 509, 299–309 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang, X., Dai, Y. & Gong, H. Nickel-catalyzed reductive couplings. Top. Curr. Chem. 374, 43 (2016).

    Article  Google Scholar 

  3. Yue, H. et al. Nickel-catalyzed C–N bond activation: activated primary amines as alkylating reagents in reductive cross-coupling. Chem. Sci. 10, 4430–4435 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huihui, K. M. M. et al. Decarboxylative cross-electrophile coupling of N-hydroxyphthalimide esters with aryl iodides. J. Am. Chem. Soc. 138, 5016–5019 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, P. et al. Nickel-electrocatalysed C(sp3)–C(sp3) cross-coupling of unactivated alkyl halides. Nat. Catal. https://doi.org/10.1038/s41929-024-01118-3 (2024).

  6. Lyon, W. L. & MacMillan, D. W. C. Expedient access to underexplored chemical space: deoxygenative C(sp3)–C(sp3) cross-coupling. J. Am. Chem. Soc. 145, 7736–7742 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weix, D. J. Methods and mechanisms for cross-electrophile coupling of Csp2 halides with alkyl electrophiles. Acc. Chem. Res. 48, 1767–1775 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Truesdell, B. L., Hamby, T. B. & Sevov, C. S. General C(sp2)–C(sp3) cross-electrophile coupling reactions enabled by overcharge protection of homogeneous electrocatalysts. J. Am. Chem. Soc. 142, 5884–5893 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Hamby, T. B., LaLama, M. J. & Sevov, C. S. Controlling Ni redox states by dynamic ligand exchange for electroreductive Csp3–Csp2 coupling. Science 376, 410–416 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, P., Le, C. C. & MacMillan, D. W. C. Silyl radical activation of alkyl halides in metallaphotoredox catalysis: a unique pathway for cross-electrophile coupling. J. Am. Chem. Soc. 138, 8084–8087 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harwood, S. J. et al. Modular terpene synthesis enabled by mild electrochemical couplings. Science 375, 745–752 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Le, C. C. et al. A general small-scale reactor to enable standardization and acceleration of photocatalytic reactions. ACS Cent. Sci. 3, 647–653 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Hansen, E. C. et al. New ligands for nickel catalysis from diverse pharmaceutical heterocycle libraries. Nat. Chem. 8, 1126–1130 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Choi, J. & Fu, G. C. Transition metal-catalyzed alkyl–alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Johnston, C. P., Smith, R. T., Allmendinger, S. & MacMillan, D. W. C. Metallaphotoredox-catalysed sp3sp3 cross-coupling of carboxylic acids with alkyl halides. Nature 536, 322–325 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sakai, H. A. & Macmillan, D. W. C. Nontraditional fragment couplings of alcohols and carboxylic acids: C(sp3)–C(sp3) cross-coupling via radical sorting. J. Am. Chem. Soc. 144, 6185–6192 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smith, R. T. et al. Metallaphotoredox-catalyzed cross-electrophile Csp3–Csp3 coupling of aliphatic bromides. J. Am. Chem. Soc. 140, 17433–17438 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dawson, G. A., Spielvogel, E. H. & Diao, T. Nickel-catalyzed radical mechanisms: informing cross-coupling for synthesizing non-canonical biomolecules. Acc. Chem. Res. 56, 3640–3653 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kranthikumar, R. Recent advances in C(sp3)–C(sp3) cross-coupling chemistry: a dominant performance of nickel catalysts. Organometallics 41, 667–679 (2022).

    Article  CAS  Google Scholar 

  20. Liu, W., Lavagnino, M. N., Gould, C. A., Alcázar, J. & MacMillan, D. W. C. A biomimetic SH2 cross-coupling mechanism for quaternary sp3-carbon formation. Science 374, 1258–1263 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gan, X. et al. Carbon quaternization of redox active esters and olefins by decarboxylative coupling. Science 384, 113–118 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Zhang, W. et al. Electrochemically driven cross-electrophile coupling of alkyl halides. Nature 604, 292–297 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dinh, L. P. et al. Persistent organonickel complexes as general platforms for Csp2–Csp3 coupling reactions. Nat. Chem. https://doi.org/10.1038/s41557-024-01528-7 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kitiachvili, K. D., Mindiola, D. J. & Hillhouse, G. L. Preparation of stable alkyl complexes of Ni(I) and their one-electron oxidation to Ni(II) complex cations. J. Am. Chem. Soc. 126, 10554–10555 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Wagner, C. L. & Diao, T. in Comprehensive Organometallic Chemistry IV (eds Parkin, G. et al.) 271–356 (Elsevier, 2022).

  26. Csok, Z., Vechorkin, O., Harkins, S. B., Scopelliti, R. & Hu, X. Nickel complexes of a pincer NN2 ligand: multiple carbon–chloride activation of CH2Cl2 and CHCl3 leads to selective carbon–carbon bond formation. J. Am. Chem. Soc. 130, 8156–8157 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Anderson, T. J., Jones, G. D. & Vicic, D. A. Evidence for a NiI active species in the catalytic cross-coupling of alkyl electrophiles. J. Am. Chem. Soc. 126, 8100–8101 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Jones, G. D. et al. Ligand redox effects in the synthesis, electronic structure, and reactivity of an alkyl–alkyl cross-coupling catalyst. J. Am. Chem. Soc. 128, 13175–13183 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Griego, L., Chae, J. B. & Mirica, L. M. A bulky 1,4,7-triazacyclononane and acetonitrile, a Goldilocks system for probing the role of NiIII and NiI centers in cross-coupling catalysis. Chem 10, 867–881 (2024).

    Article  CAS  Google Scholar 

  30. Akana, M. E. et al. Computational methods enable the prediction of improved catalysts for nickel-catalyzed cross-electrophile coupling. J. Am. Chem. Soc. 146, 3043–3051 (2024).

    Article  CAS  PubMed  Google Scholar 

  31. Rein, J. et al. Unlocking the potential of high-throughput experimentation for electrochemistry with a standardized microscale reactor. ACS Cent. Sci. 7, 1347–1355 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gatazka, M. R., McFee, E. C., Ng, C. H., Wearing, E. R. & Schindler, C. S. New strategies for the synthesis of 1- and 2-azetines and their applications as value-added building blocks. Org. Biomol. Chem. 20, 9052–9068 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, Y. & Begley, T. P. Mechanistic studies on CysS—a vitamin B12-dependent radical SAM methyltransferase involved in the biosynthesis of the tert-butyl group of cystobactamid. J. Am. Chem. Soc. 142, 9944–9954 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Bour, J. R., Ferguson, D. M., McClain, E. J., Kampf, J. W. & Sanford, M. S. Connecting organometallic Ni(III) and Ni(IV): reactions of carbon-centered radicals with high-valent organonickel complexes. J. Am. Chem. Soc. 141, 8914–8920 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, R. et al. Alcohol–alcohol cross-coupling enabled by SH2 radical sorting. Science 383, 1350–1357 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Qin, T. et al. A general alkyl–alkyl cross-coupling enabled by redox-active esters and alkylzinc reagents. Science 352, 801–805 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin, Q., Spielvogel, E. H. & Diao, T. Carbon-centered radical capture at nickel(II) complexes: spectroscopic evidence, rates, and selectivity. Chem 9, 1295–1308 (2023).

    Article  CAS  Google Scholar 

  38. Watson, M. B., Rath, N. P. & Mirica, L. M. Oxidative C–C bond formation reactivity of organometallic Ni(II), Ni(III), and Ni(IV) complexes. J. Am. Chem. Soc. 139, 35–38 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Lin, Q., Dawson, G. & Diao, T. Experimental electrochemical potentials of nickel complexes. Synlett 32, 1606–1620 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (NIH R35 GM138373) and a Camille and Henry Dreyfus Teacher Scholar Award to C.S.S. V.A. thanks the TÜBİTAK - BİDEB (2214-A International Research Fellowship Program for PhD Students) for a scholarship. We thank L. Lewis for assistance with EPR spectroscopic measurements.

Author information

Authors and Affiliations

Authors

Contributions

S.A., D.K. and C.S.S. conceived the work and designed the experiments. S.W. and V.A. contributed equally. S.A., S.W., V.A., H.F.S. and M.M. performed all experiments and collected all data. S.A., S.W., V.A., H.F.S. and M.M. synthesized all substrates. H.F.S. performed parallel electrolysis reactions. C.E.M. performed collection and refinement of crystallographic data. M.M. performed computational studies. All authors analysed the data. S.A. and C.S.S. wrote the paper and all authors provided revisions.

Corresponding authors

Correspondence to Dipannita Kalyani or Christo S. Sevov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Kaid Harper and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Information; for details, see Table of Contents.

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Zubaydi, S., Waske, S., Akyildiz, V. et al. Reductive alkyl–alkyl coupling from isolable nickel–alkyl complexes. Nature 634, 585–591 (2024). https://doi.org/10.1038/s41586-024-07987-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07987-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing