Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aging-dependent evolving electrochemical potentials of biomolecular condensates regulate their physicochemical activities

Abstract

A passive consequence of macromolecular condensation is the establishment of an ion concentration gradient between the dilute and dense phases, which in turn governs distinct electrochemical properties of condensates. However, the mechanisms that regulate the electrochemical equilibrium of condensates and their impacts on emergent physicochemical functions remain unknown. Here we demonstrate that the electrochemical environments and the physical and chemical activities of biomolecular condensates, dependent on the electrochemical potential of condensates, are regulated by aging-associated intermolecular interactions and interfacial effects. Our findings reveal that enhanced dense-phase interactions during condensate maturation continuously modulate the ion distribution between the two phases. Moreover, modulating the interfacial regions of condensates can affect the apparent pH within the condensates. To directly probe the interphase and interfacial electric potentials of condensates, we have designed and implemented electrochemical potentiometry and second harmonic generation-based approaches. Our results suggest that the non-equilibrium nature of biomolecular condensates might play a crucial role in modulating the electrochemical activities of living systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The aging-dependent internal pH transition of biomolecular condensates.
Fig. 2: The aging-dependent interfacial structure of condensates affects condensate pH.
Fig. 3: Analysing the interphase electric potential with electrochemical potentiometry.
Fig. 4: Evaluation of aging-dependent surface potentials of condensates with SHG.
Fig. 5: The interfacial potential of condensates modulates the electrochemical and physical functions of condensates.

Similar content being viewed by others

Data availability

All relevant data are included with the paper and its related Supplementary Information. Source data are provided with this paper.

References

  1. Roden, C. & Gladfelter, A. S. RNA contributions to the form and function of biomolecular condensates. Nat. Rev. Mol. Cell Biol. 22, 183–195 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alberti, S. & Hyman, A. A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol. 22, 196–213 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Dai, Y., You, L. & Chilkoti, A. Engineering synthetic biomolecular condensates. Nat. Rev. Bioeng. 1, 466–480 (2023).

    Article  CAS  Google Scholar 

  5. Choi, J.-M., Holehouse, A. S. & Pappu, R. V. Physical principles underlying the complex biology of intracellular phase transitions. Annu. Rev. Biophys. 49, 107–133 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pappu, R. V., Cohen, S. R., Dar, F., Farag, M. & Kar, M. Phase transitions of associative biomacromolecules. Chem. Rev. 123, 8945–8987 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Romero-Perez, P. S., Dorone, Y., Flores, E., Sukenik, S. & Boeynaems, S. When phased without water: biophysics of cellular desiccation, from biomolecules to condensates. Chem. Rev. 123, 9010–9035 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Posey, A. E. et al. Biomolecular condensates are characterized by interphase electric potentials. J. Am. Chem. Soc. 10.1021/jacs.4c08946 (2024).

  9. Dai, Y. et al. Biomolecular condensates regulate cellular electrochemical equilibria. Cell 187, 5951–5966.e5918 (2024).

    Article  CAS  PubMed  Google Scholar 

  10. Dai, Y. et al. Interface of biomolecular condensates modulates redox reactions. Chem 9, 1594–1609 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kilgore, H. R. & Young, R. A. Learning the chemical grammar of biomolecular condensates. Nat. Chem. Biol. 18, 1298–1306 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kilgore, H. R. et al. Distinct chemical environments in biomolecular condensates. Nat. Chem. Biol. 20, 291–301 (2024).

    Article  CAS  PubMed  Google Scholar 

  13. Ye, S. et al. Micropolarity governs the structural organization of biomolecular condensates. Nat. Chem. Biol. 20, 443–451 (2024).

    Article  CAS  PubMed  Google Scholar 

  14. Cakmak, F. P., Choi, S., Meyer, M. O., Bevilacqua, P. C. & Keating, C. D. Prebiotically-relevant low polyion multivalency can improve functionality of membraneless compartments. Nat. Commun. 11, 5949 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Choi, S., Knoerdel, A. R., Sing, C. E. & Keating, C. D. Effect of polypeptide complex coacervate microenvironment on protonation of a guest molecule. J. Phys. Chem. B 127, 5978–5991 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Ausserwöger, H. et al. Quantifying collective interactions in biomolecular phase separation. Preprint at https://doi.org/10.1101/2023.05.31.543137 (2023).

  17. King, M. R. et al. Macromolecular condensation organizes nucleolar sub-phases to set up a pH gradient. Cell 187, 1889–1906.e1824 (2024).

    Article  CAS  PubMed  Google Scholar 

  18. Watson, J. L. et al. Macromolecular condensation buffers intracellular water potential. Nature 623, 842–852 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Iglesias-Artola, J. M. et al. Charge-density reduction promotes ribozyme activity in RNA–peptide coacervates via RNA fluidization and magnesium partitioning. Nat. Chem. 14, 407–416 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Choi, S., Meyer, M. O., Bevilacqua, P. C. & Keating, C. D. Phase-specific RNA accumulation and duplex thermodynamics in multiphase coacervate models for membraneless organelles. Nat. Chem. 14, 1110–1117 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Cao, S. et al. Dipeptide coacervates as artificial membraneless organelles for bioorthogonal catalysis. Nat. Commun. 15, 39 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guo, X. et al. Biomolecular condensates can function as inherent catalysts. Preprint at https://doi.org/10.1101/2024.07.06.602359 (2024).

  23. Hoffmann, C. et al. Electric potential at the interface of membraneless organelles gauged by graphene. Nano Lett. 23, 10796–10801 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yan, X. et al. Intra-condensate demixing of TDP-43 inside stress granules generates pathological aggregates. Preprint at https://doi.org/10.1101/2024.01.23.576837 (2024).

  25. Dai, Y., Wang, Z.-G. & Zare, R. N. Unlocking the electrochemical functions of biomolecular condensates. Nat. Chem. Biol. 20, 1420–1433 (2024).

    Article  CAS  PubMed  Google Scholar 

  26. Lee, D.-yD. et al. Magnesium flux modulates ribosomes to increase bacterial survival. Cell 177, 352–360.e313 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Prindle, A. et al. Ion channels enable electrical communication in bacterial communities. Nature 527, 59–63 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kikuchi, K. et al. Electrochemical potential enables dormant spores to integrate environmental signals. Science 378, 43–49 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    Article  PubMed  Google Scholar 

  30. Wolozin, B. & Ivanov, P. Stress granules and neurodegeneration. Nat. Rev. Neurosci. 20, 649–666 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tsang, B., Pritišanac, I., Scherer, S. W., Moses, A. M. & Forman-Kay, J. D. Phase separation as a missing mechanism for interpretation of disease mutations. Cell 183, 1742–1756 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. Nat. Phys. 11, 899–904 (2015).

    Article  CAS  Google Scholar 

  33. Erkamp, N. A. et al. Spatially non-uniform condensates emerge from dynamically arrested phase separation. Nat. Commun. 14, 684 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Galvanetto, N. et al. Extreme dynamics in a biomolecular condensate. Nature 619, 876–883 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fritsch, A. W. et al. Local thermodynamics govern formation and dissolution of Caenorhabditis elegans P granule condensates. Proc. Natl Acad. Sci. USA 118, e2102772118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kirschbaum, J. & Zwicker, D. Controlling biomolecular condensates via chemical reactions. J. R. Soc. Interface 18, 20210255 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Takaki, R., Jawerth, L., Popović, M. & Jülicher, F. Theory of rheology and aging of protein condensates. PRX Life 1, 013006 (2023).

    Article  Google Scholar 

  38. Alshareedah, I. et al. Sequence-specific interactions determine viscoelasticity and ageing dynamics of protein condensates. Nat. Phys 20, 1482–1491 (2024).

    Article  CAS  PubMed  Google Scholar 

  39. Alshareedah, I., Moosa, M. M., Pham, M., Potoyan, D. A. & Banerjee, P. R. Programmable viscoelasticity in protein–RNA condensates with disordered sticker-spacer polypeptides. Nat. Commun. 12, 6620 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  40. Holehouse, A. S. & Kragelund, B. B. The molecular basis for cellular function of intrinsically disordered protein regions. Nat. Rev. Mol. Cell Biol. 25, 187–211 (2024).

    Article  CAS  PubMed  Google Scholar 

  41. Nott, T. J. et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57, 936–947 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dai, Y. et al. Programmable synthetic biomolecular condensates for cellular control. Nat. Chem. Biol. 19, 518–528 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dzuricky, M., Rogers, B. A., Shahid, A., Cremer, P. S. & Chilkoti, A. De novo engineering of intracellular condensates using artificial disordered proteins. Nat. Chem. 12, 814–825 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tan, C., Saurabh, S., Bruchez, M. P., Schwartz, R. & LeDuc, P. Molecular crowding shapes gene expression in synthetic cellular nanosystems. Nat. Nanotechnol. 8, 602–608 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shen, Y. et al. The liquid-to-solid transition of FUS is promoted by the condensate surface. Proc. Natl Acad. Sci. USA 120, e2301366120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Emmanouilidis, L. et al. NMR and EPR reveal a compaction of the RNA-binding protein FUS upon droplet formation. Nat. Chem. Biol. 17, 608–614 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Emmanouilidis, L. et al. A solid beta-sheet structure is formed at the surface of FUS droplets during aging. Nat. Chem. Biol. 20, 1044–1052 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Farag, M. et al. Condensates formed by prion-like low-complexity domains have small-world network structures and interfaces defined by expanded conformations. Nat. Commun. 13, 7722 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Linsenmeier, M. et al. The interface of condensates of the hnRNPA1 low-complexity domain promotes formation of amyloid fibrils. Nat. Chem. 15, 1340–1349 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mangiarotti, A., Chen, N., Zhao, Z., Lipowsky, R. & Dimova, R. Wetting and complex remodeling of membranes by biomolecular condensates. Nat. Commun. 14, 2809 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen, B. et al. Water–solid contact electrification causes hydrogen peroxide production from hydroxyl radical recombination in sprayed microdroplets. Proc. Natl Acad. Sci. USA 119, e2209056119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lin, S., Cao, L. N. Y., Tang, Z. & Wang, Z. L. Size-dependent charge transfer between water microdroplets. Proc. Natl Acad. Sci. USA 120, e2307977120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Trefalt, G., Behrens, S. H. & Borkovec, M. Charge regulation in the electrical double layer: ion adsorption and surface interactions. Langmuir 32, 380–400 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Vis, M. et al. Effects of electric charge on the interfacial tension between coexisting aqueous mixtures of polyelectrolyte and neutral polymer. Macromolecules 48, 7335–7345 (2015).

    Article  CAS  Google Scholar 

  55. Zhang, P. & Wang, Z.-G. Interfacial structure and tension of polyelectrolyte complex coacervates. Macromolecules 54, 10994–11007 (2021).

    Article  CAS  Google Scholar 

  56. Chen, G. Donnan equilibrium revisited: coupling between ion concentrations, osmotic pressure and Donnan potential. J. Micromech. Mol. Phys. 7, 127–134 (2022).

    Article  CAS  Google Scholar 

  57. Vis, M., Peters, V. F., Tromp, R. H. & Erné, B. H. Donnan potentials in aqueous phase-separated polymer mixtures. Langmuir 30, 5755–5762 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Stepanov, V. P. & Kulik, N. P. Galvani potential at liquid-liquid interfaces for dissolving AgBr + LiCl and AgI + LiCl melts. Ionics 24, 2851–2856 (2018).

    Article  CAS  Google Scholar 

  59. Li, L. et al. Phase behavior and salt partitioning in polyelectrolyte complex coacervates. Macromolecules 51, 2988–2995 (2018).

    Article  CAS  Google Scholar 

  60. Iqbal, M. et al. Aqueous two-phase system (ATPS): an overview and advances in its applications. Biol. Proc. Online 18, 18 (2016).

    Article  Google Scholar 

  61. Haynes, C. A., Carson, J., Blanch, H. W. & Prausnitz, J. M. Electrostatic potentials and protein partitioning in aqueous two-phase systems. AlChE J. 37, 1401–1409 (1991).

    Article  CAS  Google Scholar 

  62. Bard, A. J., Faulkner, L. R. & White, H. S. Electrochemical Methods: Fundamentals and Applications (Wiley, 2022).

  63. Lamoureux, G. & Roux, B. Absolute hydration free energy scale for alkali and halide ions established from simulations with a polarizable force field. J. Phys. Chem. B 110, 3308–3322 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Criss, C. M. & Luksha, E. Thermodynamic properties of nonaqueous solutions. IV. Free energies and entropies of solvation of some alkali metal halides in N,N-dimethylformamide. J. Phys. Chem. 72, 2966–2970 (1968).

    Article  CAS  Google Scholar 

  65. Dzbek, J. & Korzeniewski, B. Control over the contribution of the mitochondrial membrane potential (ΔΨ) and proton gradient (ΔpH) to the protonmotive force (Δp): in silico studies. J. Biol. Chem. 283, 33232–33239 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Eisenthal, K. B. Second harmonic spectroscopy of aqueous nano- and microparticle interfaces. Chem. Rev. 106, 1462–1477 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Yan, E. C. Y., Liu, Y. & Eisenthal, K. B. New method for determination of surface potential of microscopic particles by second harmonic generation. J. Phys. Chem. B 102, 6331–6336 (1998).

    Article  CAS  Google Scholar 

  68. Corn, R. M. & Higgins, D. A. Optical second harmonic generation as a probe of surface chemistry. Chem. Rev. 94, 107–125 (1994).

    Article  CAS  Google Scholar 

  69. Didier, M. E. P., Tarun, O. B., Jourdain, P., Magistretti, P. & Roke, S. Membrane water for probing neuronal membrane potentials and ionic fluxes at the single cell level. Nat. Commun. 9, 5287 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jin, L. et al. Characterization and application of a new optical probe for membrane lipid domains. Biophys. J. 90, 2563–2575 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu, Y., Yan, E. C. Y., Zhao, X. & Eisenthal, K. B. Surface potential of charged liposomes determined by second harmonic generation. Langmuir 17, 2063–2066 (2001).

    Article  CAS  Google Scholar 

  72. Zhao, X., Ong, S. & Eisenthal, K. B. Polarization of water molecules at a charged interface. Second harmonic studies of charged monolayers at the air/water interface. Chem. Phys. Lett. 202, 513–520 (1993).

    Article  CAS  Google Scholar 

  73. Ong, S., Zhao, X. & Eisenthal, K. B. Polarization of water molecules at a charged interface: second harmonic studies of the silica/water interface. Chem. Phys. Lett. 191, 327–335 (1992).

    Article  CAS  Google Scholar 

  74. Israelachvili, J. N. Intermolecular and Surface Forces (Academic Press, 2011).

  75. Xing, D. et al. Capture of hydroxyl radicals by hydronium cations in water microdroplets. Angew. Chem. Int. Ed. 61, e202207587 (2022).

    Article  CAS  Google Scholar 

  76. Finkelstein, E., Rosen, G. M. & Rauckman, E. J. Spin trapping of superoxide and hydroxyl radical: practical aspects. Arch. Biochem. Biophys. 200, 1–16 (1980).

    Article  CAS  PubMed  Google Scholar 

  77. Majee, A., Weber, C. A. & Jülicher, F. Charge separation at liquid interfaces. Phys. Rev. Res. 6, 033138 (2024).

    Article  CAS  Google Scholar 

  78. Lhee, S. et al. Spatial localization of charged molecules by salt ions in oil-confined water microdroplets. Sci. Adv. 6, eaba0181 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Campioni, S. et al. The presence of an air-water interface affects formation and elongation of α-synuclein fibrils. J. Am. Chem. Soc. 136, 2866–2875 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Humphries, J. et al. Species-independent attraction to biofilms through electrical signaling. Cell 168, 200–209.e212 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jentsch, T. J., Hübner, C. A. & Fuhrmann, J. C. Ion channels: function unravelled by dysfunction. Nat. Cell Biol. 6, 1039–1047 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Söding, J., Zwicker, D., Sohrabi-Jahromi, S., Boehning, M. & Kirschbaum, J. Mechanisms for active regulation of biomolecular condensates. Trends Cell Biol. 30, 4–14 (2020).

    Article  PubMed  Google Scholar 

  83. Simon, J., van Spanning, R. J. M. & Richardson, D. J. The organisation of proton motive and non-proton motive redox loops in prokaryotic respiratory systems. Biochim. Biophys. Acta 1777, 1480–1490 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Yan, E. C., Fu, L., Wang, Z. & Liu, W. Biological macromolecules at interfaces probed by chiral vibrational sum frequency generation spectroscopy. Chem. Rev. 114, 8471–8498 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Lyklema, J. Interfacial potentials: measuring the immeasurable? Substantia 1, 75–93 (2017).

    Google Scholar 

  86. Gonella, G. et al. Water at charged interfaces. Nat. Rev. Chem. 5, 466–485 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Guggenheim, E. The thermodynamics of interfaces in systems of several components. Trans. Faraday Soc. 35, 397–412 (1940).

    Article  Google Scholar 

  88. Zukoski, C. IV & Saville, D. The interpretation of electrokinetic measurements using a dynamic model of the stern layer: I. The dynamic model. J. Colloid Interface Sci. 114, 32–44 (1986).

    Article  CAS  Google Scholar 

  89. Welsh, T. J. et al. Surface electrostatics govern the emulsion stability of biomolecular condensates. Nano Lett. 22, 612–621 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Kwok, K. Y., Mckenzie, D. L., Evers, D. L. & Rice, K. G. Formulation of highly soluble poly (ethylene glycol)‐peptide DNA condensates. J. Pharm. Sci. 88, 996–1003 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Lyklema, J. & Overbeek, J. T. G. On the interpretation of electrokinetic potentials. J. Colloid Sci. 16, 501–512 (1961).

    Article  CAS  Google Scholar 

  92. Morelli, C. et al. RNA modulates hnRNPA1A amyloid formation mediated by biomolecular condensates. Nat. Chem. 16, 1052–1061 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Joshi, A. et al. Hydrogen-bonded network of water in phase-separated biomolecular condensates. J. Phys. Chem. Lett. 15, 7724–7734 (2024).

    Article  CAS  PubMed  Google Scholar 

  94. Quiroz, F. G. & Chilkoti, A. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers. Nat. Mater. 14, 1164–1171 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Meyer, D. E. & Chilkoti, A. Purification of recombinant proteins by fusion with thermally-responsive polypeptides. Nat. Biotechnol. 17, 1112–1115 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. King, R. S., Blanch, H. W. & Prausnitz, J. M. Molecular thermodynamics of aqueous two-phase systems for bioseparations. AlChE J. 34, 1585–1594 (1988).

    Article  CAS  Google Scholar 

  97. Knowles, T. P. J. et al. Kinetics and thermodynamics of amyloid formation from direct measurements of fluctuations in fibril mass. Proc. Natl Acad. Sci. USA 104, 10016–10021 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Meisl, G. et al. Molecular mechanisms of protein aggregation from global fitting of kinetic models. Nat. Protoc. 11, 252–272 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge experimental support from the Center for Biomolecular Condensates and the Biology Imaging Facility of Washington University in St Louis. We appreciate helpful discussions with Z.-G. Wang’s group at California Institute of Technology. We acknowledge funding support from the McKelvy School of Engineering of Washington University in St Louis. Part of this work was supported by the Air Force Office of Scientific Research (FA9550-21-1-0170 to R.N.Z.).

Author information

Authors and Affiliations

Authors

Contributions

Y.D. generated the idea for this article. Y.D., G.H. and R.N.Z. devised the study. W.Y., X.G., Y.X., Y.M., Z.T., L.Y. and X.S. conducted the experiments. X.G., Y.X., W.Y., Y.M., L.Y. and Z.T. analysed the data. Y.D., G.H. and R.N.Z. wrote the paper, and all authors commented on the paper.

Corresponding authors

Correspondence to Richard N. Zare, Guosong Hong or Yifan Dai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Ellen Adams, Ben Erne, Drgomir Milovanovic, Mario Tagliazucchi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Texts 1–3, Figs. 1–7, Table 1 and References.

Reporting Summary

Source data

Source Data Fig. 1

Interior apparent pH of condensates at different time points.

Source Data Fig. 2

Different categories of condensates or treatments to condensates and their corresponding interior apparent pH.

Source Data Fig. 3

Electrochemical quantification of interphase electric potential difference between phases for different salt conditions and aging process.

Source Data Fig. 4

SHG signal of condensates under different salt conditions and aging time points and derived surface potentials of condensates at different ages.

Source Data Fig. 5

Analysis of electrochemical activity, partitioning functions of charged molecules and the growth of amyloid based on condensates with different ages.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Guo, X., Xia, Y. et al. Aging-dependent evolving electrochemical potentials of biomolecular condensates regulate their physicochemical activities. Nat. Chem. (2025). https://doi.org/10.1038/s41557-025-01762-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-025-01762-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing