Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Automated synthesis of prexasertib and derivatives enabled by continuous-flow solid-phase synthesis

Abstract

Recent advances in end-to-end continuous-flow synthesis are rapidly expanding the capabilities of automated customized syntheses of small-molecule pharmacophores, resulting in considerable industrial and societal impacts; however, many hurdles persist that limit the number of sequential steps that can be achieved in such systems, including solvent and reagent incompatibility between individual steps, cumulated by-product formation, risk of clogging and mismatch of timescales between steps in a processing chain. To address these limitations, herein we report a strategy that merges solid-phase synthesis and continuous-flow operation, enabling push-button automated multistep syntheses of active pharmaceutical ingredients. We demonstrate our platform with a six-step synthesis of prexasertib in 65% isolated yield after 32 h of continuous execution. As there are no interactions between individual synthetic steps in the sequence, the established chemical recipe file was directly adopted or slightly modified for the synthesis of twenty-three prexasertib derivatives, enabling both automated early and late-stage diversification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Derivatization for molecule optimization.
Fig. 2: Schematic of the development of automated SPS-flow synthesis of APIs and derivatives.
Fig. 3: Development of automated SPS-flow synthesis of prexasertib.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information. A video of the SPS-flow automated synthesis of prexasertib is recorded as Supplementary Video 1.

Code availability

The LabVIEW code for operating the SPS-flow automated synthesis in this study is available at https://github.com/nus-automated-flow-system/auto-SPS-Flow-Supplementary-Software.

References

  1. Cernak, T., Dykstra, K. D., Tyagarajan, S., Vachal, P. & Krska, S. W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Moir, M., Danon, J. J., Reekie, T. A. & Kassiou, M. An overview of late-stage functionalization in today’s drug discovery. Expert Opin. Drug Discov. 14, 1137–1149 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Trobe, M. & Burke, M. D. The molecular industrial revolution: automated synthesis of small molecules. Angew. Chem. Int. Ed. 57, 4192–4214 (2018).

    Article  CAS  Google Scholar 

  4. Ley, S. V., Fitzpatrick, D. E., Ingham, R. J. & Myers, R. M. Organic synthesis: march of the machines. Angew. Chem. Int. Ed. 54, 3449–3464 (2015).

    Article  CAS  Google Scholar 

  5. Merrifield, R. B. Automated synthesis of peptides. Science 150, 178–185 (1965).

    Article  CAS  PubMed  Google Scholar 

  6. Alvarado-Urbina, G. et al. Automated synthesis of gene fragments. Science 214, 270–274 (1981).

    Article  CAS  PubMed  Google Scholar 

  7. Seeberger, P. H. & Werz, D. B. Automated synthesis of oligosaccharides as a basis for drug discovery. Nat. Rev. Drug Discov. 4, 751–763 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Li, J. et al. Synthesis of many different types of organic small molecules using one automated process. Science 347, 1221–1226 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lehmann, J. W., Blair, D. J. & Burke, M. D. Towards the generalized iterative synthesis of small molecules. Nat. Rev. Chem. 2, 0115 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Woerly, E. M., Roy, J. & Burke, M. D. Synthesis of most polyene natural product motifs using just twelve building blocks and one coupling reaction. Nat. Chem. 6, 484–491 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Steiner, S. et al. Organic synthesis in a modular robotic system driven by a chemical programming language. Science 363, eaav2211 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Adamo, A. et al. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science 352, 61–67 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Chatterjee, S., Guidi, M., Seeberger, P. H. & Gilmore, K. Automated radial synthesis of organic molecules. Nature 579, 379–384 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Hartman, R. L., McMullen, J. P. & Jensen, K. F. Deciding whether to go with the flow: evaluating the merits of flow reactors for synthesis. Angew. Chem. Int. Ed. 50, 7502–7519 (2011).

    Article  CAS  Google Scholar 

  15. Gutmann, B., Cantillo, D. & Kappe, C. O. Continuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredients. Angew. Chem. Int. Ed. 54, 6688–6728 (2015).

    Article  CAS  Google Scholar 

  16. Snead, D. R. & Jamison, T. F. A three-minute synthesis and purification of ibuprofen: pushing the limits of continuous-flow processing. Angew. Chem. Int. Ed. 54, 983–987 (2015).

    Article  CAS  Google Scholar 

  17. Lévesque, F. & Seeberger, P. H. Continuous-flow synthesis of the anti-malaria drug artemisinin. Angew. Chem. Int. Ed. 51, 1706–1709 (2012).

    Article  Google Scholar 

  18. Tsubogo, T., Oyamada, H. & Kobayashi, S. Multistep continuous-flow synthesis of (R)- and (S)-rolipram using heterogeneous catalysts. Nature 520, 329–332 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Russell, M. G. & Jamison, T. F. Seven-step continuous flow synthesis of linezolid without intermediate purification. Angew. Chem. Int. Ed. 58, 7678–7681 (2019).

    Article  CAS  Google Scholar 

  20. Sharma, M. K., Acharya, R. B., Shukla, C. A. & Kulkarni, A. A. Assessing the possibilities of designing a unified multistep continuous flow synthesis platform. Beilstein J. Org. Chem. 14, 1917–1936 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bana, P. et al. The route from problem to solution in multistep continuous flow synthesis of pharmaceutical compounds. Bioorg. Med. Chem. 25, 6180–6189 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Baxendale, I. R. et al. A flow process for the multi-step synthesis of the alkaloid natural product oxomaritidine: a new paradigm for molecular assembly. Chem. Commun. 2566–2568 (2006).

  23. Ley, S. V. On being green: can flow chemistry help? Chem. Rec. 12, 378–390 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Merrifield, B. Solid phase synthesis. Science 232, 341–347 (1986).

    Article  CAS  PubMed  Google Scholar 

  25. Guillier, F., Orain, D. & Bradley, M. Linkers and cleavage strategies in solid-phase organic synthesis and combinatorial chemistry. Chem. Rev. 100, 2091–2158 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Palmieri, A., Ley, S. V., Polyzos, A., Ladlow, M. & Baxendale, I. R. Continuous flow based catch and release protocol for the synthesis of α-ketoesters. Beilstein J. Org. Chem. 5, 23 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Baxendale, I. R., Ley, S. V., Smith, C. D. & Tranmer, G. K. A flow reactor process for the synthesis of peptides utilizing immobilized reagents, scavengers and catch and release protocols. Chem. Commun. 4835–4837 (2006).

  28. Hopkin, M. D., Baxendale, I. R. & Ley, S. V. A flow-based synthesis of imatinib: the API of Gleevec. Chem. Commun. 46, 2450–2452 (2010).

    Article  CAS  Google Scholar 

  29. Nicolaou, K. C. et al. Synthesis of epothilones A and B in solid and solution phase. Nature 387, 268–272 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Nandy, J. P. et al. Advances in solution- and solid-phase synthesis toward the generation of natural product-like libraries. Chem. Rev. 109, 1999–2060 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Plante, O. J., Palmacci, E. R. & Seeberger, P. H. Automated solid-phase synthesis of oligosaccharides. Science 291, 1523–1527 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Mijalis, A. J. et al. A fully automated flow-based approach for accelerated peptide synthesis. Nat. Chem. Biol. 13, 464–466 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Njarðarson Group. Top 200 small molecule pharmaceuticals by retail sales in 2018. The University of Arizona https://njardarson.lab.arizona.edu/sites/njardarson.lab.arizona.edu/files/Top%20200%20Small%20Molecule%20Pharmaceuticals%202018V4.pdf (2018).

  34. Coley, C. W. et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 365, eaax1566 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Bédard, A. C. et al. Reconfigurable system for automated optimization of diverse chemical reactions. Science 361, 1220–1225 (2018).

    Article  PubMed  Google Scholar 

  36. Cole, K. P. et al. Kilogram-scale prexasertib monolactate monohydrate synthesis under continuous-flow CGMP conditions. Science 356, 1144–1150 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Farouz, F. S., Holcomb, R. C., Kasar, R. & Myers, S. S. Compounds useful for inhibiting chk1. WO Patent 2010077758 A1 (2010).

  38. Bagley, M. C. et al. The effect of RO3201195 and a pyrazolyl ketone P38 MAPK inhibitor library on the proliferation of Werner syndrome cells. Org. Biomol. Chem. 14, 947–956 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Baron, H., Remfry, F. G. P. & Thorpe, J. F. The formation and reactions of imino-compounds. Part I. Condensation of ethyl cyanoacetate with its sodium derivative. J. Chem. Soc. Trans. 85, 1726–1761 (1904).

    Article  CAS  Google Scholar 

  40. Munirathinam, R., Huskens, J. & Verboom, W. Supported catalysis in continuous-flow microreactors. Adv. Synth. Catal. 357, 1093–1123 (2015).

    Article  CAS  Google Scholar 

  41. Schneider, G. & Fechner, U. Computer-based de novo design of drug-like molecules. Nat. Rev. Drug Discov. 4, 649–663 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Scott, P. J. H. Linker Strategies in Solid-Phase Organic Synthesis (John Wiley & Sons, 2009)

  43. Blaney, P., Grigg, R. & Sridharan, V. Traceless solid-phase organic synthesis. Chem. Rev. 102, 2607–2624 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Cankařová, N., Schütznerová, E. & Krchňák, V. Traceless solid-phase organic synthesis. Chem. Rev. 119, 12089–12207 (2019).

    Article  PubMed  Google Scholar 

  45. Sanghvi, Y. S. A status update of modified oligonucleotides for chemotherapeutics applications. Curr. Protoc. Nucl. Acid Chem. 46, 4.1.1–4.1.22 (2011).

    Article  Google Scholar 

  46. Schneider, G. Automating drug discovery. Nat. Rev. Drug Discov. 17, 97–113 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agency for Science, Technology and Research (A*STAR) of Singapore RIE2020 AME IRG (grant no. A1783c0013). We thank J. T. Njardarson for allowing us to reproduce and modify the poster ‘Top 200 small molecule pharmaceuticals by retail sales in 2018’ (see Supplementary Table 11).

Author information

Authors and Affiliations

Authors

Contributions

J.W. conceived and designed the experiments. C.L., W.W., M.W. and W.C. performed the experiments. J.W., S.A.K., C.L. and M.W. analysed the experimental data. C.L. and J.R. built the SPS-flow reactor system. J.X. performed the programming for automated control. B.I.S. and L.-W.D. performed the preliminary biological screening. J.W. and S.A.K. wrote the manuscript with input from all authors. All of the authors have approved the final version of the manuscript.

Corresponding authors

Correspondence to Saif A. Khan or Jie Wu.

Ethics declarations

Competing interests

J.W., S.A.K., C.L., W.W., W.C., M.W. and J.X. are inventors on International Patent Application PCT/SG2020/050603 filed by the National University of Singapore, which covers the synthesis of non-peptide small-molecules using the strategy of automated SPS-flow synthesis. The authors declare no other competing interests.

Additional information

Peer review information Nature Chemistry thanks Kevin Cole, Christopher Gordon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Figs. 1–64, Tables 1–11, synthetic procedural details, automation development and implementation, high-resolution mass spectrometry, infrared data, NMR data and spectra, HPLC spectra.

Reporting Summary

Supplementary Video 1

Recording of the automated synthesis of prexasertib using the SPS-flow system.

Supplementary Data 1

Raw data for the bioactivity evaluation shown in Supplementary Fig. 23.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Xie, J., Wu, W. et al. Automated synthesis of prexasertib and derivatives enabled by continuous-flow solid-phase synthesis. Nat. Chem. 13, 451–457 (2021). https://doi.org/10.1038/s41557-021-00662-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00662-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing