Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Designer DNA architecture offers precise and multivalent spatial pattern-recognition for viral sensing and inhibition

Abstract

DNA, when folded into nanostructures with a specific shape, is capable of spacing and arranging binding sites into a complex geometric pattern with nanometre precision. Here we demonstrate a designer DNA nanostructure that can act as a template to display multiple binding motifs with precise spatial pattern-recognition properties, and that this approach can confer exceptional sensing and potent viral inhibitory capabilities. A star-shaped DNA architecture, carrying five molecular beacon-like motifs, was constructed to display ten dengue envelope protein domain III (ED3)-targeting aptamers into a two-dimensional pattern precisely matching the spatial arrangement of ED3 clusters on the dengue (DENV) viral surface. The resulting multivalent interactions provide high DENV-binding avidity. We show that this structure is a potent viral inhibitor and that it can act as a sensor by including a fluorescent output to report binding. Our molecular-platform design strategy could be adapted to detect and combat other disease-causing pathogens by generating the requisite ligand patterns on customized DNA nanoarchitectures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dimensional pattern analysis and scaffold design principle.
Fig. 2: DNA star sensor.
Fig. 3: Evaluation of control sensors.
Fig. 4: Evaluation of inhibitors.
Fig. 5: Confocal imaging.
Fig. 6: Design principle of DNA nanostructure-based method with pattern-recognition properties.

Similar content being viewed by others

Data availability

All data supporting the findings of this work are available within this paper (figures, videos and description) and its Supplementary Information. All other data are available from the corresponding authors upon request.

Code availability

The SEQUIN program used in this study is available from the corresponding authors upon reasonable request.

References

  1. Harrison, S. C. Virology: looking inside adenovirus. Science 329, 1026–1027 (2010).

    CAS  PubMed  Google Scholar 

  2. Krantz, B. A. et al. A phenylalanine clamp catalyzes protein translocation through the anthrax toxin pore. Science 309, 777–781 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bandlow, V. et al. Spatial screening of hemagglutinin on influenza A virus particles: sialyl-LacNAc displays on DNA and PEG scaffolds reveal the requirements for bivalency enhanced interactions with weak monovalent binders. J. Am. Chem. Soc. 139, 16389–16397 (2017).

    CAS  PubMed  Google Scholar 

  4. Mourez, M. et al. Designing a polyvalent inhibitor of anthrax toxin. Nat. Biotechnol. 19, 958–961 (2001).

    CAS  PubMed  Google Scholar 

  5. Rai, P. et al. Statistical pattern matching facilitates the design of polyvalent inhibitors of anthrax and cholera toxins. Nat. Biotechnol. 24, 582–586 (2006).

    CAS  PubMed  Google Scholar 

  6. Joshi, A. et al. Nanotube-assisted protein deactivation. Nat. Nanotechnol. 3, 41–45 (2008).

    CAS  PubMed  Google Scholar 

  7. Kitov, P. I. et al. Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands. Nature 403, 669–672 (2000).

    CAS  PubMed  Google Scholar 

  8. Kwon, S. J. et al. Nanostructured glycan architecture is important in the inhibition of influenza A virus infection. Nat. Nanotechnol. 12, 48–54 (2017).

    CAS  PubMed  Google Scholar 

  9. Ahmad, K. M., Xiao, Y. & Soh, H. T. Selection is more intelligent than design: improving the affinity of a bivalent ligand through directed evolution. Nucleic Acids Res. 40, 11777–11783 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. King, D. J. & Noss, R. R. Toxicity of polyacrylamide and acrylamide monomer. Rev. Environ. Health 8, 3–16 (1989).

    CAS  PubMed  Google Scholar 

  11. Malik, N. et al. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125i-labelled polyamidoamine dendrimers in vivo. J. Control. Release 65, 133–148 (2000).

    CAS  PubMed  Google Scholar 

  12. Strauch, E. M. et al. Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site. Nat. Biotechnol. 35, 667–671 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin, C., Liu, Y., Rinker, S. & Yan, H. DNA tile based self-assembly: building complex nanoarchitectures. ChemPhysChem 7, 1641–1647 (2006).

    CAS  PubMed  Google Scholar 

  14. Chandrasekaran, A. R., Anderson, N., Kizer, M., Halvorsen, K. & Wang, X. Beyond the fold: emerging biological applications of DNA origami. ChemBioChem 17, 1081–1089 (2016).

    CAS  PubMed  Google Scholar 

  15. Hong, F., Zhang, F., Liu, Y. & Yan, H. DNA origami: scaffolds for creating higher order structures. Chem. Rev. 117, 12584–12640 (2017).

    CAS  PubMed  Google Scholar 

  16. Hu, Q., Li, H., Wang, L., Gu, H. & Fan, C. DNA nanotechnology-enabled drug delivery systems. Chem. Rev. 119, 6459–6506 (2019).

    CAS  PubMed  Google Scholar 

  17. Seeman, N. C. Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).

    CAS  PubMed  Google Scholar 

  18. Zhang, Q. et al. DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano 8, 6633–6643 (2014).

    CAS  PubMed  Google Scholar 

  19. Lee, D. S., Qian, H., Tay, C. Y. & Leong, D. T. Cellular processing and destinies of artificial DNA nanostructures. Chem. Soc. Rev. 45, 4199–4225 (2016).

    CAS  PubMed  Google Scholar 

  20. Vinther, M. & Kjems, J. Interfacing DNA nanodevices with biology: challenges, solutions and perspectives. New J. Phys. 18, 085005 (2016).

    Google Scholar 

  21. Li, S. et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 36, 258–264 (2018).

    CAS  PubMed  Google Scholar 

  22. Mei, Q. A. et al. Stability of DNA origami nanoarrays in cell lysate. Nano Lett. 11, 1477–1482 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hahn, J., Wickham, S. F. J., Shih, W. M. & Perrault, S. D. Addressing the instability of DNA nanostructures in tissue culture. ACS Nano 8, 8765–8775 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Agarwal, N. P., Matthies, M., Gur, F. N., Osada, K. & Schmidt, T. L. Block copolymer micellization as a protection strategy for DNA origami. Angew. Chem. Int. Ed. 56, 5460–5464 (2017).

    CAS  Google Scholar 

  25. Perrault, S. D. & Shih, W. M. Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability. ACS Nano 8, 5132–5140 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    CAS  PubMed  Google Scholar 

  27. Wilner, O. I. & Willner, I. Functionalized DNA nanostructures. Chem. Rev. 112, 2528–2556 (2012).

    CAS  PubMed  Google Scholar 

  28. Lee, H. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol. 7, 389–393 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Jiang, D. et al. DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nat. Biomed. Eng. 2, 865–877 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Rinker, S. et al. Nanostructures for distance-dependent multivalent ligand–protein binding. Nat. Nanotechnol. 3, 418–422 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Shaw, A. et al. Spatial control of membrane receptor function using ligand nanocalipers. Nat. Methods. 11, 841–846 (2014).

    CAS  PubMed  Google Scholar 

  32. Shaw, A. et al. Binding to nanopatterned antigens is dominated by the spatial tolerance of antibodies. Nat. Nanotechnol. 14, 184–190 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Storch, G. A. Diagnostic virology. Clin. Infect. Dis. 31, 739–751 (2000).

    CAS  PubMed  Google Scholar 

  34. Read, S. J., Burnett, D. & Fink, C. G. Molecular techniques for clinical diagnostic virology. J. Clin. Pathol. 53, 502–506 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Scof, S. Recent advances in diagnostic testing for viral infections. Biosci. Horizons 9, 1–11 (2016).

    Google Scholar 

  36. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition Ch. 4 (World Health Organization, 2009).

  37. Whitehead, S. S., Blaney, J. E., Durbin, A. P. & Murphy, B. R. Prospects for a dengue virus vaccine. Nat. Rev. Microbiol. 5, 518–528 (2007).

    CAS  PubMed  Google Scholar 

  38. Boni, M. F. Vaccination and antigenic drift in influenza. Vaccine 26, C8–C14 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, X. et al. Cryo-EM structure of the mature dengue virus at 3.5-Å resolution. Nat. Struct. Mol. Biol. 20, 105–110 (2013).

    PubMed  Google Scholar 

  40. Fibriansah, G. et al. Structural changes in dengue virus when exposed to a temperature of 37 °C. J. Virol. 87, 7585–7592 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, J. H. & Seeman, N. C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991).

    CAS  PubMed  Google Scholar 

  42. Wang, X. & Seeman, N. C. Assembly and characterization of 8-arm and 12-arm DNA branched junctions. J. Am. Chem. Soc. 129, 8169–8176 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ke, Y. et al. Scaffolded DNA origami of a DNA tetrahedron molecular container. Nano Lett. 9, 2445–2447 (2009).

    CAS  PubMed  Google Scholar 

  44. Chen, H. L., Hsiao, W. H., Lee, H. C., Wu, S. C. & Cheng, J. W. Selection and characterization of DNA aptamers targeting all four serotypes of dengue viruses. PLoS One 10, e0131240 (2015).

    PubMed  PubMed Central  Google Scholar 

  45. Tyagi, S. & Kramer, F. R. Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14, 303–308 (1996).

    CAS  PubMed  Google Scholar 

  46. Gubler, D. J. Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev. 11, 480–496 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Beaudet, J. M. et al. Characterization of human placental glycosaminoglycans and regional binding to VAR2CSA in malaria infected erythrocytes. Glycoconj. J. 31, 109–116 (2014).

    CAS  PubMed  Google Scholar 

  48. Chen, Y. et al. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat. Med. 3, 866–871 (1997).

    CAS  PubMed  Google Scholar 

  49. Kim, S. Y. et al. Interaction of Zika virus envelope protein with glycosaminoglycans. Biochemistry 56, 1151–1162 (2017).

    CAS  PubMed  Google Scholar 

  50. Gonzalez, V. M., Martin, M. E., Fernandez, G. & Garcia-Sacristan, A. Use of aptamers as diagnostics tools and antiviral agents for human viruses. Pharmaceuticals 9, 78 (2016).

    PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the core facilities at RPI-CBIS, Wadsworth Center of New York State Department of Health, Organic Electronics and Information Displays and Jiangsu Key Laboratory and Institute of Advanced Materials of Nanjing University of Posts and Telecommunications (China). This work was funded by an RPI-CBIS start-up fund and award, a gift fund from HT Materials Corporation to X.W., the Ministry of Science and Technology of China (2017YFA0205302), the National Science Foundation of China (21922408 and 61771253), the Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars (BK20190038) to J.C., the Global Research Laboratory Program through the National Research Foundation of Korea (2014K1A1A2043032) to J.S.D. and S.-J.K., and the National Institute of Health (DK111958) to R.J.L. The microscopy for time-lapsed analysis is supported by the National Science Foundation (NSF-MRI-1725984).

Author information

Authors and Affiliations

Authors

Contributions

P.S.K., S.-J.K., J.S.D., R.J.L. and X.W. conceived the original 2D spatial pattern-matching strategy. P.S.K., S.-J.K., R.J.L., J.C. and X.W. conceived and designed the experiments. S.R. and J.C. designed the sequences of the DNA scaffolds and performed non-denaturing PAGE. S.R., M.X., D.Z., J.C., F. Zhou and N.C.S. performed the AFM experiments. P.S.K., S.R. and M.E.K. purified and folded the DNA. L.K. and L.D.K. prepared viruses, conducted RT–qPCR detection and performed the plaque forming assays. F. Zhang performed SPR analysis. P.S.K., S.-J.K. and D.K. performed confocal microscopy. P.S.K. performed all other experiments. K.F. analysed the aptamer binding pattern of DENV. P.S.K., S.-J.K. and X.W. performed data analysis. P.S.K., S.-J.K., R.J.L. and X.W. led the preparation of the manuscript with contributions from all authors. P.S.K., S.R., S.-J.K., M.E.K. and L.K. contributed equally to this work.

Corresponding authors

Correspondence to Jie Chao or Xing Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary materials, methods, Figs. 1–9, Tables 1–11, notes and references.

Reporting Summary

Supplementary Video 1 (unbound condition)

Time-lapsed, live confocal imaging of dengue cell internalization.

Supplementary Video 2 (DNA star-bound condition)

Time-lapsed, live confocal imaging of DNA star-bound dengue losing cell internalization ability.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, P.S., Ren, S., Kwon, SJ. et al. Designer DNA architecture offers precise and multivalent spatial pattern-recognition for viral sensing and inhibition. Nat. Chem. 12, 26–35 (2020). https://doi.org/10.1038/s41557-019-0369-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-019-0369-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research