当前位置: X-MOL首页全球导师 国内导师 › 李发强

个人简介

工作经历 2015/10-present Principle Investigator, College of Life Sciences, South China Agricultural University 2014/01-2015/09 Assistant Scientist, Department of Genetics, University of Wisconsin, Madison, USA 2009/01-2013/12 Research Associate, Department of Genetics, University of Wisconsin, Madison, USA 教育经历 2001/09-2008/02,美国纽约城市大学研究生院和大学中心(CUNY-Graduate School and University Center),哲学博士,生物化学专业 1998/09-2001/07,中山大学生命科学学院,理学硕士,遗传学专业 1994/09-1998/07,中山大学生命科学学院,理学学士,微生物学专业 科研项目 1. 国家自然科学基金面上项目,拟南芥ABA受体通过选择性细胞自噬降解的分子机制研究,2020/01-2023/12,在研,主持。 2. 国家自然科学基金面上项目,细胞自噬在玉米胚乳发育过程中的作用及调控机制的研究,2018/01-2021/12,在研,主持。 3. 广东省自然科学基金项目,拟南芥抗真菌毒素脱氧雪腐镰刀菌烯醇相关基因的鉴定与功能分析,2021/01-2023/12,在研,主持。 4.中山大学有害生物控制与资源利用国家重点实验室开放课题,2021/01-2023/12,在研,主持。 5. 广东省自然科学基金项目,ATG8互作蛋白FYVE2a/b调控植物细胞自噬的分子机制研究,2018/05-2021/04,在研,参加。 6. 华南农业大学丁颖人才重点培养对象项目,2016始,在研,主持。 7. 华南农业大学高层次引进人才科研启动项目,2015/10始,在研,主持。 教学活动 承担《分子生物学(双语)》、《细胞生物学(双语)》等本科课程及硕士生《蛋白质翻译后修饰》的教学工作。 指导本科生获2019年第四届全国大学生生命科学创新创业大赛一等奖。

研究领域

1. 以拟南芥为模式植物,通过多组学的方法鉴定植物特有的细胞自噬调控因子; 2. 细胞自噬在玉米胚乳发育过程中的作用及调控机制的研究; 3. GWAS挖掘玉米氮素循环利用的主效基因。

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

1. Huang, X., Zheng, C., Liu, F., Yang, C., Zheng, P., Lu, X., Tian, J., Chung, T., Otegui, M.S., Xiao, S., Gao, C., Vierstra, R.D.*, and Li, F.* (2019). Genetic analyses of the Arabidopsis ATG1 kinase complex reveal both kinase-dependent and independent autophagic routes during fixed-carbon starvation. Plant Cell. 31(12): 2973-2995, DOI: https://doi.org/10.1105/tpc.19.00066 (*Co-corresponding author) 2. Xiao Z, Yang C, Liu C, Yang L, Yang S, Zhou J, Li F, Jiang L, Xiao S, Gao C*, Shen W. J.* (2020). SINAT E3 ligases regulate the stability of the ESCRT component FREE1 in response to iron deficiency in plants. Integr Plant Biol. 62:1399-1417. 3. Yang C, Luo M, Zhuang X, Li F, Gao C.* (2020). Transcriptional and epigenetic regulation of autophagy in plants. Trends Genet. 36:676-688. 4. McLoughlin F, Marshall RS, Ding X, Chatt EC, Kirkpatrick LD, Augustine RC, Li F, Otegui MS, Vierstra R.D.* (2020). Autophagy plays prominent roles in amino acid, nucleotide, and carbohydrate metabolism during fixed-carbon starvation in Maize. Plant Cell. 32:2699-2724. 5. Yang C, Shen W, Yang L, Sun Y, Li X, Lai M, Wei J, Wang C, Xu Y, Li F, Liang S, Yang C, Zhong S, Luo M, Gao C.* (2020). HY5-HDA9 module transcriptionally regulates plant autophagy in response to light-to-dark conversion and nitrogen starvation. Mol Plant. 13:515-531. 6. Gou, W., Li, X., Guo, S., Liu, Y., Li, F., and Xie, Q.* (2019). Autophagy in plant: a new orchestrator in the regulation of the phytohormones homeostasis. Int. J. Mol. Sci. 20(12), 2900. 7. Liu, F., Marshall, R.S., and Li, F.* (2018). Understanding and exploiting the roles of autophagy in plants through multi-omics approaches. Plant Sci. 274, 146-152. 8. McLoughlin, F., Augustine, R.C., Marshall, R.S., Li, F., Kirkpatrick, L.D., Otegui, M.S., and Vierstra, R.D.* (2018). Maize multi-omics reveal roles for autophagic recycling in proteome remodelling and lipid turnover. Nat. Plants 4, 1056-1070. 9. Qi, H., Xia, F.N., Xie, L.J., Yu, L.J., Chen, Q.F., Zhuang, X.H., Wang, Q., Li, F., Jiang, L., Xie, Q., and Xiao, S.* (2017). TRAF-family proteins regulate autophagy dynamics by modulating AUTOPHAGY PROTEIN6 stability in Arabidopsis. Plant Cell. 29:890-911. 10.Chen, L., Li, F.*, and Xiao, S.* (2017). Analysis of plant autophagy. Methods Mol Biol 1662, 267-280. (*Co-corresponding author) 11.黄晓, 李发强*. (2016). 细胞自噬在植物细胞程序性死亡中的作用. 植物学报 51, 859-862. 12.Klionsky, D.J.*, and multiple authors including Li F., (2016). Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1-222. 13.Li, F., Chung, T., Pennington, J.G., Federico, M.L., Kaeppler, H.F., Kaeppler, S.M., Otegui, M.S., and Vierstra, R.D.* (2015). Autophagic recycling plays a central role in maize nitrogen remobilization. Plant Cell 27, 1389-1408. 14.Marshall, R.S., Li, F., Gemperline, D.C., Book, A.J., and Vierstra, R.D.* (2015). Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/Ubiquitin receptor RPN10 in Arabidopsis. Mol. Cell 58, 1053-1066. 15.Spitzer, C., Li, F., Buono, R., Roschzttardtz, H., Chung, T., Zhang, M., Osteryoung, K.W., Vierstra, R.D., and Otegui, M.S.* (2015). The endosomal protein CHARGED MULTIVESICULAR BODY PROTEIN1 regulates the autophagic turnover of plastids in Arabidopsis. Plant Cell. 27:391-402 16.Li, F., Chung, T., and Vierstra, R.D.* (2014). AUTOPHAGY-RELATED11 plays a critical role in general autophagy- and senescence-induced mitophagy in Arabidopsis. Plant Cell 26, 788-807. 17.Li, F., and Vierstra, R.D.* (2014). Arabidopsis ATG11, a scaffold that links the ATG1-ATG13 kinase complex to general autophagy and selective mitophagy. Autophagy 10, 1466-1467. 18.Klionsky, D.J.*, and multiple authors including Li F., (2012). Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445-544. 19.Li, F., and Vierstra, R.D.* (2012a). Autophagy: a multifaceted intracellular system for bulk and selective recycling. Trends Plant Sci. 17, 526-537. 20.Li, F., and Vierstra, R.D.* (2012b). Regulator and substrate: dual roles for the ATG1-ATG13 kinase complex during autophagic recycling in Arabidopsis. Autophagy 8, 982-984. 21.Suttangkakul, A., Li, F.#, Chung, T., and Vierstra, R.D.* (2011). The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. Plant Cell 23, 3761-3779. (#Co-first author) 22.Chen, Y., Li, F. #, and Wurtzel, E.T.* (2010). Isolation and characterization of the Z-ISO gene encoding a missing component of carotenoid biosynthesis in plants. Plant Physiol. 153, 66-79. (#Co-first author) 23.Li, F., Tsfadia, O., and Wurtzel, E.T.* (2009). The phytoene synthase gene family in the Grasses: subfunctionalization provides tissue-specific control of carotenogenesis. Plant Signal Behav. 4, 208-211. 24.Li, F., Vallabhaneni, R., Yu, J., Rocheford, T., and Wurtzel, E.T.* (2008b). The maize phytoene synthase gene family: overlapping roles for carotenogenesis in endosperm, photomorphogenesis, and thermal stress tolerance. Plant Physiol. 147, 1334-1346. 25.Li, F., Vallabhaneni, R., and Wurtzel, E.T.* (2008a). PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress-induced root carotenogenesis. Plant Physiol. 146, 1333-1345. 26.Li, F., Murillo, C., and Wurtzel, E.T.* (2007). Maize Y9 encodes a product essential for 15-cis-zeta-carotene isomerization. Plant Physiol. 144, 1181-1189. 27.Gallagher, C.E., Matthews, P.D., Li, F., and Wurtzel, E.T.* (2004). Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses. Plant Physiol. 135, 1776-1783.

推荐链接
down
wechat
bug