当前位置: X-MOL首页全球导师 国内导师 › 林伟伟

个人简介

林伟伟:计算机学会高级会员,IEEE会员。牵头获广东省科技进步奖二等奖(云计算调度优化技术)。主持云计算、大数据和人工智能方面的科研项目20余项,包括3项国家自然基金和多个省部级项目,具有丰富的项目研发经验。主编云计算与大数据系列教材3本,发表论文100余篇(代表性论文发表在TPDS,TCYB,TSC,TCC等优秀期刊上),申请40余件发明专利,成果得到了国际知名学者美国李克勤、澳洲Rajkumar Buyya和Albert Y. Zomaya等IEEE Fellow的认可,并将成果应用到华为技术有限公司、云宏信息科技股份有限公司、广州鼎甲计算机科技有限公司等企业,取得了良好的经济效益。 学历 ◆ 博士, 2004.9-2007.7 华南理工大学 计算机应用技术 ◆ 硕士,2001.9-2004.7 南昌大学 计算机科学技术 教学经历 本科课程 ◆大数据技术(Big Data Technology) ◆ 分布式计算技术(Distributed Computing Technology) ◆ 高级程序设计语言(Advanced Programming Language) ◆ 计算机组成原理(Principles of Computer Organization) 研究生课程 ◆ 云计算安全与监控(Cloud computing Security and Monitoring) ◆高级计算机体系结构(Advanced Computer Architecture) ◆ 大数据处理(Big Data Processing) 工作经历 ◆ 2007-至今 华南理工大学计算机科学与工程学院 ◆2016.7-2017.7 克莱姆森大学 访问学者 获奖情况 ◆2020年度广东省科技进步奖二等奖(云计算调度优化技术) ◆2008年华工优秀博士毕业论文 ◆2011年本科毕业论文优秀指导老师 ◆2013第四届云计算学术大会优秀论文奖 ◆2013年度学生科技创新优秀指导教师 ◆13,14,15年本科课堂教学质量优秀教师奖 ◆2017年科技创新指导教师三等奖 ◆2019年优秀本科毕业论文指导教师 科研项目 ◆ 17.国家自然科学基金面上项目(62072187). 云数据中心服务器的新功耗模型与节能方法. 2021.01-2024.12. 主持 ◆16.广州市重点领域研发计划项目(202007040002).基于AI及大数据的智慧银行综合应用系统. 2020/04-2023/03. 合作单位主持 ◆15.华为技术有限公司委托企业横向项目(YBN2019125032). 云业务能效提升技术研发合作项目. 2020.1-2021.1,99万元, 主持 ◆14.广东省重大应用基础研究项目(应用型专项),2020B010164003,基于国产CPU的云计算操作系统,2019/10-2024/10,4000万,核心成员 ◆13.广东省重点研发计划项目,2017B010126002,基于大数据的保险业潜客识别关键技术研发与应用推广,2020/01-2021/12,200万,合作单位主持 ◆ 12.华为技术有限公司委托企业横向项目(YBN2018115159). 云业务能耗模型技术研发项目. 2018.12-2019.12,34.5万元, 主持 ◆11.国家自然科学基金(子课题),61872084,基于虚拟集群与容器技术的跨云数据密集型工作流计算研究. 2019.01-2032.12,64万元(直接经费),合作单位主持 ◆10.国家自然科学基金面上项目,61772205,面向云计算的虚拟机能耗模型及其应用方法研究,2018/01-2021/12,63万元(直接经费),主持 ◆9.广东省科技计划项目(应用型专项),2017B010126002,基于大数据的保险业潜客识别关键技术研发与应用推广,2017/01-2019/12,800万,合作单位主持 ◆8.广州市南沙区科技计划项目,2017GJ001,跨媒体大数据智能计算关键技术及应用平台研发,2017/09-2019/08,200万,合作单位主持 ◆7.广东省科技厅产学研项目,2017B090901061,自主安全可控的云计算平台关键技术研发,2017/01-2018/12,30万元,合作单位主持 ◆6.广东省科技计划项目,2017A010101008,面向大数据平台的多租户关键技术研发,2017/01-2018/12,30万,主持 ◆5.广州市科技计划项目,201604010040,云宏云计算管理平台的智能管理关键技术研发,2015/04-2017/03,40万元,合作单位主持 ◆4.国家自然科学基金青年科学基金项目,61402183,异构云环境下能耗高效调度模型与优化方法研究,2015/01-2017/12,26万元,主持 ◆3.广东省科技计划项目,2014B010117001,面向海量云存储用户的大数据分析关键技术研发及应用示范,2015/01-2017/12,50万元,合作单位主持 ◆2.国家自然科学基金青年科学基金项目,61202466,云计算环境下的安全外包计算研究,2013/01-2015/12,23万元,第二参与人 ◆1.广东省科技计划项目,2013B010401024,云存储的节能技术研发,2013/06-2015/06,10万元,合作单位主持 申请专利 1.发明专利.一种面向异构平台的能耗优化调度方法(已授权). 中国,ZL201510765040.X. 2018.12. 林伟伟,杨超. 2.发明专利.一种面向大数据的云容灾备份方法(已授权). 中国,ZL201510350060.0. 2018.02.林伟伟,张子龙,钟坯平 3.发明专利.一种基于云计算的大数据统一分析处理方法(已授权). 中国,ZL201310460030.6. 2018.04 .林伟伟; 齐德昱. 4.发明专利.一种基于分布式内存计算的数据去重方法(已授权).中国,ZL201510670867.2. 2018.08. 林伟伟,钟坯平,利业鞑. 5.发明专利.基于服务发现和容器技术的大数据平台弹性伸缩方法(已授权).中国,ZL201711062730.4. 2017.11.林伟伟、吴梓明、张子龙. 6.发明专利. 面向组件依赖的负载均衡容器调度方法(已授权), 中国, ZL201711062824.1. 2017.11 . 林伟伟、吴梓明 7.发明专利.基于超资源融合的云计算体系的构造方法(已授权),中国,201210444683.0. 2012.11 . 齐德昱、林伟伟、李剑 8.发明专利. 一种基于数据交互融合的计算机系统构造方法(已授权),中国,201110266617.4. 2011.09 . 齐德昱、林伟伟、李剑 9.发明专利. 一种基于动态重配置虚拟资源的云计算资源调度方法(已授权),中国,201010268105.7. 2010.09 . 林伟伟、齐德昱 10.发明专利. 一种基于部件能耗模型的云服务器能耗测算方法及系统,中国, 201710924039.6. 2017.09 . 林伟伟、王浩宇、吴文泰 11.发明专利 . 一种面向不同类型负载的多租户资源优化调度方法,中国, 2016109160594. 2016.10 . 林伟伟、温昂展、张子龙、张国强、李进 12.发明专利. 一种基于容器和虚拟机混合云环境下的负载动态迁移方法(申请号201910494970.4). 2019.06 . 林伟伟,刘阳 13.发明专利. 一种面向容器集群的能耗优化资源调度系统及其方法(申请号201811517271.9). 2018.12 . 林伟伟、王泽涛

研究领域

◆云计算能耗建模和调度优化 ◆大数据架构优化和分析算法 ◆人工智能应用技术

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[46]Tiansheng Huang, Weiwei Lin*, Wentai Wu, Ligang He, Keqin Li, Albert Zomaya. An Efficiency-boosting Client Selection Scheme for Federated Learning with Fairness Guarantee. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(7): 1552-1564 [45]Wentai Wu, Ligang He*, Weiwei Lin, Rui Mao. Accelerating Federated Learning over Reliability-Agnostic Clients in Mobile Edge Computing Systems. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(7): 1539-1551 [44]Weiwei Lin, Tianhao Yu, Chongzhi Gao, Fagui Liu, Tengyue Li, Simon Fong, Yongxiang Wang. A Hardware-aware CPU Power Measurement Based on the Power-exponent Function Model for Cloud Servers. Information Sciences, 2021,547, 1045-1065 [43]Wentai Wu, Ligang He, Weiwei Lin, Yi Su, Yuhua Cui, Carsten Maple, Stephen A. Jarvis. Developing an Unsupervised Real-time Anomaly Detection Scheme for Time Series with Multi-seasonality. IEEE Transactions on Knowledge and Data Engineering, 2020, DOI:10.1109/TKDE.2020.3035685 [42]Weiwei Lin, Tiansheng Huang, Xin Li,, Fang Shi,, Xiumin Wang, Ching-Hsien Hsu,. Energy-Efficient Computation Offloading for UAV-Assisted MEC: a Two-Stage Optimization Scheme. ACM Transactions on Internet Technology, 2020, accepted [41]陈玉平, 刘波, 林伟伟*, 程慧雯. 云边协同综述. 计算机科学, 2021 [40]You Deguang, Weiwei Lin, Fang Shi, Jianzhuo Li, Deyu Qi, Simon Fong. A Novel Approach for CPU Load Prediction of Cloud Server Combining Denoising and Error Correction Computing. Computing, 2020,DOI:10.1007/s00607-020-00865-y [39]Weiwei Lin*, Guangxin Wu, Xinyang Wang, Keqin Li. An artificial neural network approach to power consumption model construction for servers in cloud data centers. IEEE Transactions on Sustainable Computing, 2020, 5(3):329-34 [38]马泽华, 刘波, 林伟伟*, 李加伟. 无服务器平台资源调度综述. 计算机科学, 2021 [37]WEIWEI LIN, FANG SHI, WENTAI WU, KEQIN LI, GUANGXIN WU, AL-ALAS MOHAMMED. A Taxonomy and Survey of Power Models and Power Modeling for Cloud Servers. ACM Computing Surveys, 2020, Accepted [36]Tiansheng Huang, Weiwei Lin*, Chennian Xiong, Rui Pan, Jingxuan Huang. An Ant Colony Optimization Based Multi-objective Service Replicas Placement Strategy for Fog Computing. IEEE Transactions on Cybernetics, 2020, DOI:10.1109/TCYB.2020.2989309. [35]Wentai Wu, Ligang He, Weiwei Lin, Rui Mao, Carsten Maple, Stephen Jarvis. SAFA: a Semi-Asynchronous Protocol for Fast Federated Learning with Low Overhead. IEEE Transactions on Computers, 2020, DOI 10.1109/TC.2020.2994391 [34]Weiwei Lin*, Yufeng Zhang, Wentai Wu, Simon Fong, Ligang He, Jia Chang. An adaptive workload-aware power consumption measuring method for servers in cloud data centers. Computing, 2020, DOI: 10.1007/s00607-020-00819-4 [33]Chenxin Dai, Xiumin Wang*, Kai Liu, Deyu Qi, Weiwei Lin, Pan Zhou. Stable Task Assignment for Mobile Crowdsensing with Budget Constraint. IEEE Transactions on Mobile Computing, 2020, DOI: 10.1109/TMC.2020.3000234 [32]Pang, Xiongwen and Zhou, Yanqiang and Li, Pengcheng and Lin, Weiwei* and Wu, Wentai and Wang, James Z. A novel syntax-aware automatic graphics code generation with attention-based deep neural network[J]. Journal of Network and Computer Applications, 2020: 102636. [31]Xiongwen Pang, Yanqiang Zhou, Pan Wang, Weiwei Lin*, Victor Chang. An Innovative Neural Network Approach for Stock Market Prediction. The Journal of Supercomputing, 2020,76:2098–2118. [30]Weiwei Lin, Wentai Wu, Ligang He. An On-line Virtual Machine Consolidation Strategy for Dual Improvement in Performance and Energy Conservation of Server Clusters in Cloud Data Centers. IEEE Transactions on Services Computing, 2019, DOI: 10.1109/TSC.2019.2961082 [29]Weiwei Lin*, Gaofeng Peng, Xinran Bian, Siyao Xu, Victor Chang, Yin Li. Scheduling Algorithms for Heterogeneous Cloud Environment: Main Resource Load Balancing Algorithm and Time Balancing Algorithm. Journal of Grid Computing, 2019, 17(4), 699-726. [28]Yingxuan Chen, Weiwei Lin*, James Z. Wang. A dual-attention-based stock price trend prediction model with dual features. IEEE Access, 2019,7(1):148047-148058 [27]Weiwei Lin*, Zilong Zhang, Shaoliang Peng. Academic research trend analysis based on big data technology. International Journal of Computational Science and Engineering, 2019, 20(1): 31-39. [26] Wentai Wu, Weiwei Lin*, Ligang He, Guangxin Wu, Ching-Hsien Hsu. A Power Consumption Model for Cloud Servers Based on Elman Neural Network. IEEE Transactions on Cloud Computing, 2019, DOI: 10.1109/TCC.2019.2922379 [25] Yan Zhong, Simon Fong, Shimin Hu, Raymond Wong, Weiwei Lin. A Novel Sensor Data Pre-Processing Methodology for the Internet of Things Using Anomaly Detection and Transfer-By-Subspace-Similarity Transformation. Sensors, 2019, 19(20): 4536. [24] Weiwei Lin*, Guangxin Wu, Xinyang Wang, Keqin Li. An artificial neural network approach to power consumption model construction for servers in cloud data centers. IEEE Transactions on Sustainable Computing, 2019, DOI: 10.1109/TSUSC.2019.2910129 [23] Ziming Wu, Weiwei Lin*, pan liu, jingbang chen, li mao. Predicting long-term scientific impact based on multi-field feature extraction. IEEE Access, 2019, DOI: 10.1109/ACCESS.2019.2910239 [22] 舒娜, 刘波, 林伟伟*, 李鹏飞. 分布式机器学习平台与算法综述. 计算机科学, 2019, 46(3): 9-18. [21] Tiansheng Huang, Weiwei Lin*, Yin Li,LiGang HeShao,Liang Peng. A Latency-Aware Multiple Data Replicas Placement Strategy for Fog Computing. Journal of Signal Processing Systems, 2019: 1-14. [20] Weiwei Lin*, Zilong Zhang, Shaoliang Peng. Academic research trend analysis based on big data technology. International Journal of Computational Science and Engineering, 2018,DOI: 10.1504/IJCSE.2017.10016151 [19] Wei-Wei Lin, Wen-Tai Wu, Hao-Yu Wang, James Z. Wang, Ching-Hsien Hsu. Experimental and Quantitative Analysis of Server Power Model for Cloud Data Centers. Future Generation Computer Systems, 2018,86:940-950. [18] Weiwei Lin*, Haoyu Wang, Yufeng Zhang, Deyu Qi, James Z. Wang, Victor Chang. A cloud server energy consumption measurement system for heterogeneous cloud environments. information sciences, , 2018, 468: 47-62 [17] WenTai Wu, WeiWei Lin*, Ching-Hsien Hsu, LiGang He. Energy-Efficient Hadoop for Big Data Analytics and Computing: A Systematic Review and Research Insights. Future Generation Computer Systems,2018,86:1351-1367. [16] Lin Longxin, Weiwei Lin*, and Huang Sibin. Group object detection and tracking by combining RPCA and fractal analysis. Soft Computing, 2018, 22(1): 231-242. [15] Delong Cui, Zhiping Peng, Jianbin Xiong, Bo Xu, Weiwei Lin. A Reinforcement Learning-based Mixed Job Scheduler Scheme for Grid or IaaS Cloud. IEEE Transactions on Cloud Computing, 2017. [14] Weiwei Lin, Weiqi Wang, Wentai Wu,Xiongwen Pang, Bo Liu, et al.. A Heuristic Task Scheduling Algorithm Based on Server Power Efficiency Model in Cloud Environments. Sustainable Computing: Informatics and Systems, 2017,DOI:10.1016/j.suscom.2017.10.007 [13] Wentai Wu, Weiwei Lin*, Zhiping Peng. An Intelligent Power Consumption Model for Virtual Machines under CPU-intensive workload in Cloud Environment . Soft Computing.2017, 21(19):5755–5764. [12] Weiwei Lin, Ziming Wu, Longxin Lin, Angzhan Wen and Jin Li. An Ensemble Random Forest Algorithm for Insurance Big Data Analysis. IEEE Access,2017, 5(11):16568-16575 [11]Weiwei Lin, SiYao Xu, Jin Li, Lingling Xu, Zhiping Peng. Design and theoretical analysis of virtual machine placement algorithm based on peak workload characteristics. Soft Computing. 2017, 21(5): 1301-1314 [10] Weiwei lin, Siyao xu, Ligang He, Jin Li. Multi-Resource Scheduling and Power Simulation for Cloud Computing. Information Sciences, 2017, 397: 168-186. [9] Wei-Wei Lin, Wen-Tai Wu, Hao-Yu Wang, James Z. Wang, Ching-Hsien Hsu. Experimental and Quantitative Analysis of Server Power Model for Cloud Data Centers. Future Generation Computer Systems, 2018,86:940-950, DOI: 10.1016/j.future.2016.11.034 [8] 徐思尧,林伟伟*,王子骏. 基于负载高峰特征的虚拟机放置算法. 软件学报, 2016,27(7):1876-1887 [7] 林伟伟,吴文泰. 面向云计算环境的能耗测量和管理方法. 软件学报,2016,27(4):1026-1041 [6] Weiwei Lin, Wentai Wu, James Z. Wang. A Heuristic Task Scheduling Algorithm for Heterogeneous Virtual Clusters. Scientific Programming, Volume 2016 (2016), Article ID 7040276, 10 pages,http://dx.doi.org/10.1155/2016/7040276. [5] Wang Xinyang, Liang Jiarong , Qi Deyu, lin Weiwei. . The twisted crossed cube. Concurrency and Computation: Practice and Experience, 2016,28: 1507–1526. [5] Weiwei Lin, Chaoyue Zhu, Jin Li, Bo Liu, Huiqiong Lian. Novel Algorithms and Equivalence Optimization for Resource Allocation in Cloud Computing. International Journal of Web and Grid Services, 2015,11(2):193-210 [4] Wei-Wei Lin, Chao Yang, Chao-yue zhu, James Z. Wang, Zhi-ping Peng. Energy Efficiency Oriented Scheduling for Heterogeneous Cloud Systems. International Journal of Grid and High Performance Computing, 2014, 6(4): 1-14. [3] Weiwei Lin, Chen Liang, James Z. Wang, and Rajkumar Buyya. Bandwidth-aware divisible task scheduling for cloud computing. Software: Practice and Experience[J], ISSN: 0038-0644, Wiley Press, New York, USA, 2014,44(2):163–174 [2] Wei-Wei Lin, Liang Tian, James Z. Wang. Novel Resource Allocation Algorithm for Energy-Efficient Cloud Computing in Heterogeneous Environment. Journal of Grid and High Performance Computing (IJGHPC), 2014, 6(1): 63-76. [1] 林伟伟,刘波,朱良昌,齐德昱. 基于CSP的能耗高效云计算资源调度模型与算法. 通信学报,2013,(12):33~41.(第四届云计算学术大会优秀论文)

学术兼职

◆ 中国计算机学会高级会员,IEEE会员,担任多个国际国内学术期刊和学术会议的审稿人,如《Information Sciences》、《Future Generation Computer Systems》、《Journal of Supercomputing》、《KSII Transactions on Internet and Information Systems》、《IEEE Transactions on Parallel and Distributed Systems》、《Computers & Electrical Engineering》、《International Journal of Simulation and Process Modelling》、《International Journal of Intelligent Systems》、《Cluster Computing》、《Journal of Grid Computing》、《计算机学报》、《华南理工大学学报(自然科学版)》、《东南大学学报(自然科学版)》、《通信学报》、《计算机科学》、《计算机工程与科学》、《华中科技大学学报(自然科学版)》等。

推荐链接
down
wechat
bug