当前位置: X-MOL首页全球导师 国内导师 › 周胜林

个人简介

周胜林,男,1968年11月生,湖北罗田人。1999年6月于浙江大学获理学博士学位,1999年7月至2007年11月在汕头大学工作,先后任讲师(1999年7月)、副教授(2001年11月)、教授(2004年12月)、硕士生导师。期间2004年10月至2006年10月澳大利亚西澳大学访问学者。2007年12月至今在华南理工大学工作,任教授、博士生导师。2007年入选华南理工大学百人计划“杰出青年教师”,2013年入选广东省高校“千百十工程”省级培养对象。 教学和指导研究生情况 本科生课程:高等代数(1)(2)、近世代数、组合数学、线性代数(全英); 研究生课程:基础代数、有限群论、置换群与组合结构、设计理论、李型单群。 指导研究生:毕业博士研究生10名、毕业硕士生11名;在读博士研究生4名、硕士研究生6名。 主持科研项目 1.2019.01-2022.12:旗传递2-设计的分类研究,国家自然科学基金,在研。 2.2017.05-2020.05: 2-设计的旗传递自同构群,广东省自然科学基金,结题。 3. 2015.01-2018.12:有限置换群与组合设计,国家自然科学基金,结题。 4.2013.10-2015.09:设计的自同构群及其分类研究,广东省自然科学基金,结题。 5.2014.01-2016.12:群与组合设计,广东省教育厅,广东省高等学校高层次人才项目,结题。 6.2011.01-2013.12:组合设计的自同构群,国家自然科学基金,结题。 7.2009.01-2010.12:具有高度对称性的组合设计的研究,教育部留学回国人员基金,结题。 8.2009.01-2011.12:旗传递三平面及其相关问题研究,教育部博士点基金新教师基金,结题。 9.2004.01-2005.12: 组合设计、结合方案和有限群论,广东省自然科学基金,结题。 10.2003.12-2004.11:区组设计的自同构群的研究,国家自然科学基金数学天元基金,结题。 编写教材 1.线性代数与解析几何,周胜林、刘西民 编,高等教育出版社,2012年。 2.抽象代数简明教程,李慧陵、周胜林、刘伟俊 编著,清华大学出版社,2014年。 3.线性代数与解析几何(第二版),周胜林、刘西民 编,高等教育出版社,2015年。

研究领域

有限群论,组合设计理论

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

1. Shenglin Zhou*, Yajie Wang, Flag-transitive non-symmetric 2-designs with (r,λ)=1 and alternating socle, Electronic Journal of Combinatorics,22(2015), #P2.6. 2. Delu Tian, Shenglin Zhou*, Flag-transitive 2-(v, k, λ) symmetric designs with sporadic Socle, J. Combin. Designs, 23: 140–150, 2015. 3. Huili Dong, Shenglin Zhou*, Flag-transitive primitive (v, k, λ) symmetric designs with lambda at most 10 and alternating socle, Journal of Algebra and its Applications,13(6)(2014), 1450025. 4. Haiyan Guan, Shenglin Zhou*, Non-existence of point-transitive 2-(106,6,1) designs, Electronic Journal of Combinatorics, 21(1) (2014), P1.58. 5. Delu Tian, Shenglin Zhou*, Flag-transitive point-primitive symmetric (v, k, λ) designs with lambda at most 100, Journal of Combinatorial Designs, 21(4)(2013), 127-141. 6. Huili Dong, Shenglin Zhou*, Affine groups and flag-transitive triplanes, Science China-Mathematics, 55(12)(2012), 2257-2578. 7. Haiyan Guan, Delu Tian, Shenglin Zhou*, Primitive linear spaces with Fang-Li parameter gcd(k, r) at most ten, Frontier of Mathematics in China, 7 (6) (2012), 1095-1112. 8. Huili Dong, Shenglin Zhou*, Alternating groups and flag-transitive 2-(v, k, 4) symmetric designs, Journal of Combinatorial Designs, 19 (6) (2011), 475-483. 9. Shenglin Zhou*, Delu Tian, Flag-transitive point-primitive 2-(v,k,4) symmetric designs and two dimensional classical groups, Applied Matheatics-A Journal of Chinese Universities Series B, 26 (3) (2011), 334-341. 10. Shenglin Zhou*, Yanbo Ma, Weidong Fang, Line-primitive linear spaces with Fang-Li parameter gcd(k, r) at most 12, Acta Mathematics Sinica-English Seires, 27 (4) (2011), 657-670. 11. Shenglin Zhou*, Huili Dong, Alternating groups and flag-transitive triplanes, Designs Codes and Cryptogrgraphy, 57 (2) (2010), 117-126. 12. Weidong Fang, Huili Dong, Shenglin Zhou*, Flag-transitive 2-(v, k, 4) symmetric designs, ARS Combinatoria, 95 (2010), 333-342. 13. Shenglin Zhou*, Huili Dong, Exceptional groups of Lie type and flag-transitive triplanes, Science China-Mathematics, 53(2) (2010), 447-456. 14. Guangguo Han, Shenglin Zhou, Block-Transitive 2-(nu, k, 1) Designs and the Groups E-7(q), ARS Combinatoria, 93(2009), 439-450. 15. Anton Betten, Anne Delandtsheer, Mask Law, Alice C. Niemeyer, Cheryl E. Praeger, Shenglin Zhou, Finite line-transitive linear spaces: Theory and search strategies, Acta Mathematics Sinica-English Series, 25(9),(2009), 1399-1436. 16. Shenglin Zhou*, Huili Dong, Weidong Fang, Finite classical groups and flag-transitive triplanes, Discrete Mathematics, 309(6),(2009), 5183-5195. 17. Shenglin Zhou*, Huili Dong, Sporadic groups and flag-transitive triplanes, Science in China Series A-Mathematics, 25 (2) (2009), 394-400. 18. C. E. Praeger, Shenglin Zhou, Classification of line-transitive point-imprimitive linear spaces with line size at most 12, Designs Codes and Cryptography, 47(1-3) (2008), 99-111. 19. Cheryl E. Praeger, Shenglin Zhou, Imprimitive flag-transitive symmetric designs, Journal of Combinatorial Theory Series A, 113 (7) (2006), 1381-1395. 20. Shenglin Zhou*, Block primitive 2-(v,k,1) designs admitting a Ree group of characteristic two, Designs Codes and Cryptography, 36 (2) (2005), 159-169. 21. Weijun Liu, Shenglin Zhou, Huiling Li, Xingui Fang, Finite linear spaces admitting a Ree simple group, European Journal of Combinatorics, 25 (3) (2004), 311-325. 22. Shenglin Zhou*, Block primitive 2-(v, k, 1) designs admitting a Ree simple group, European Journal of Combinatorics, 23 (8) (2002), 1085-1090. 23. Shenglin Zhou*, Huiling Li, Weijun Liu, The Ree groups (2)G(2)(q) and 2-(v, k, 1) block designs, Discrete mathematics, 224(1-3) (2000), 251-258. 24. Yan Zhu, Haiyan Guan and Shenglin Zhou*, Flag-transitive 2-(v,k, λ) symmetric designs with (r,λ)=1 and alternating socle, Front. Math. China, 10(6), 2015, 1483-1496. 25. Haiyan Guan and Shenglin Zhou, Extremely primitive groups and linear spaces, Czechoslovak Mathematical Journal, 66(141)(2016),445-455. 26. Delu Tian, Shenglin Zhou, Classification of flag-transitive primitive symmetric $(v,k,\lambda)$ designs with PSL(2,q) as socle, Journal of Mathematical Research with Applications, 36(2), 2016,127-139. 27. 田德路,周胜林, $M_{12}$作用在396个点上的SPBIB设计的分类,数学学报,59(3), 2016, 377-384. 28. H.X. Liang, S.L. Zhou*, Flag-transitive point-primitive automorphism groups of non-symmetric $2$-$(v,k,2)$ designs, J. Combin. Des., 24(8), 2016,421-435. 29 X.Q. Zhan, S.L. Zhou*, Flag-transitive non-symmetric $2$-designs with $(r,\lambda)=1$ and sporadic socle, Des. Codes Cryptogr.,81(3), 2016, 481-487. 30.Yan Zhu, Delu Tian and Shenglin Zhou*, Flag-transitive point-primitive (v,k, λ) symmetric designs with lambda at most 100 and alternating socle, Math. Slovaca, 66(5), 2016, 1037-1046. 31. Delu Tian, Shenglin Zhou*, Flag-transitive symmetric (v,k,\lambda) designs admitting primitive automorphism groups with socle PSL(12,2), Ars Combinatoria, 126(2016),157-163. 32. H.X. Liang, S.L. Zhou*, Flag-transitive point-primitive non-symmetric $2$-$(v,k,2)$ designs with alternating socle, Bull. Belg. Math. Soc. Simon Stevin, 23(4)(2016),559-571. 33.Haiyan Guan, Shenglin Zhou, Line-transitive point-imprimitive linear spaces with number of points being a product of two primes, J. Algebra Appl.,16(6) (2017),1750110 (13 pages). 34.王贝军,梁洪雪,周胜林,交错群与旗传递点本原的非对称2-(v,k,3)设计,纯粹数学与应用数学,32(6),2016,649-660. 35. X.H. Zhang, S.L. Zhou* Block-transitive and point-primitive $2$-$(v,k,2)$ designs with sporadic socle, J. Combin. Des., 25(6),2017,231-238. 36.Haiyan Guan, Shenglin Zhou, Point-primitive linear spaces with number of points being a product of two primes, Communications in Algebra, 2017,45(10):4222-4237. 37. Sung Y. Song, Bangteng Xu, Shenglin Zhou,Combinatorial extensions of Terwilliger algebra and wreath product of association schemes, Discrete Mathematics, 340(5),2017,892-905. 38.Xiaoqin Zhan, Shenglin Zhou, A classification of flag-transitive 2-designs with $λ\geq(r,\lambda)^2$ and sporadic socle, Discrete Mathematics 340 (2017), 630-636. 39. Yajie Wang, Shenglin Zhou*,Flag-transitive point-primitive (v,k,4) symmetric designs with exceptional socle of Lie type, Bulletin of the Iranian Mathematical Society,43(2),2017,259-273. 40.Yajie Wang, Shenglin Zhou, Symmetric designs admitting flag-transitive,point-primitive almost simple groups of Lie type, Journal of Algebra and Its Applications, vol.16(10),2017, 1750192. doi:10.1142/S0219498817501924. 41.Shenglin Zhou, Xiaoqin Zhan, Flag-transitive automorphism groups of 2-designs with $λ\geq(r,\lambda)^2$ and an application to symmetric designs, ARS Mathematica Contemporanea,14 (2018), 187–195. 42. Lang Tang, S. Zhou, Flag-transitive quasi-residual designs with sporadic socle, Applied Mathematics and Computation, Vol.320,2018,56-60. 43. Zhilin Zhang, S. Zhou, Flag-transitive point-quasiprimitive 2-(v,k,2) designs, Des. Codes Cryptography, September 2018, 86,9: 1963–1971. 44. Xiaoqin Zhan, Shenglin Zhou, A classification of flag-transitive point-primitive 2-designs with block size 6, Journal of Combinatorial Designs, 2018,26,147-153. 45. Xiaoqin Zhan*, Shenglin Zhou, Guangzu Chen,Flag-transitive 2-(v,4,\lambda) designs of product type,Journal of Combinatorial Designs,2018,26: 455–462. 46. Lang Tang, S. Zhou, Xiaomin, Zhu,Wiener index, Harary index and graph properties with given minimum degree, Ars Combinatoria,2018,141:111-123. 47. Zhilin Zhang, S. Zhou,Flag-transitive point-quasiprimitive automorphism groups of 2-designs with lambda <= 4,DISCRETE MATHEMATICS,2019,342(2):427-432. 48. Xiaohong Zhang, S. Zhou,Sporadic finite simple groups and block designs,BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN,2018,25(4):495-506. 49. Xiaoqin Zhan*, S. Zhou,Non-symmetric 2-designs admitting a two-dimensional projective linear group,DESIGNS CODES AND CRYPTOGRAPHY,2018,86(12):2765-2773. 50.Zhang Yongli, Zhou Shenglin,Flag-Transitive Non-Symmetric 2-Designs with (r,λ)=1 and Exceptional Groups of Lie Type,The Electronic Journal of Combinatorics,Vol.27,no.2, 2020,P2.5. 51.Zhang Yongli, Zhang Zhilin,Zhou Shenglin, Reduction for primitive flag-transitive symmetr 2-(v,k,λ) designs with λ prime,Discrete Mathematics, 343(2020), 111843. 52.Zhang Yongli, Zhang Zhilin,Zhou Shenglin, Reduction for primitive flag-transitive symmetr 2-(v,k,4) designs,Journal of Algebra and Its Applications(2020) 2050240 (10 pages),doi: 10.1142/S0219498820502400 53. Wang Yajie, Zhou Shenglin, Flag-transitive 2-(v,k,\lambda) symmetric designs with \lambda \geq (k,\lambda)^2 and alternating socle, Discrete Mathematics, accept,5 May,2020,accept.

推荐链接
down
wechat
bug