个人简介
李用声 男,1965年7月生
欢迎具有良好数学基础、精修过数学物理方程、实变函数、泛函分析、点集拓扑、微分几何的本科毕业生报考硕士、博士研究生。
简历
1981年9月—1985年7月 在华东师范大学数学系读大学,获得学士学位;
1985年9月—1988年6月 在华东师范大学数学系读研究生,获得硕士学位;
1988年7月—1995年12月 在华中理工大学数学系任教;
1991年9月—1995年12月 在华中理工大学数学系读博士研究生,1996年6月获得博士学位;
1995年12月—1998年6月 在北京应用物理与计算数学研究所博士后流动站做博士后研究工作;
1998年7月—2002年9月 在华中理工大学数学系任教;
2002年10月—现在 华南理工大学数学学院任教
教学
主讲数学系研究生课程:现代分析基础、Sobolev空间、二阶椭圆型方程、非线性发展方程 、非线性泛函分析、线性算子半群及其在PDE中的应用、调和分析等;
主讲数学系、工科各院系本科生课程:高等数学、工科数学分析、线性代数、常微分方程、偏微分方程、数学物理方程与特殊函数、复变函数、微分几何等;
科研获奖 1998年无穷维动力系统的理论研究及其应用,国防科工委科技进步一等奖(第三完成人)
1998年被评为湖北省跨世纪学术骨干
2012年全国优秀博士学位论文提名论文指导老师
科研项目
1995年——1997年 主持一项湖北省自然科学基金项目(非线性发展方程与无穷维动力系统)。
2001年——2003年 主持一项国家自然科学基金项目(数学物理中某些非线性发展方程的适定性和长时间性态)。
2005年——2007年 主持一项国家自然科学基金项目(数学物理中某些非线性偏微分方程)。
2008年——2010年 主持一项国家自然科学基金项目(数学物理中非线性Schrodinger型方程的研究)。
2012年——2015年 主持一项国家自然科学基金项目(Davey-Stewartson 型方程组的适定性和爆破性研究)。
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
1. On initial boundary value problems for nonlinear Schrodinger equations, Acta Math. Scientia, 16(4), (1996), 421-431. (SCI Exp).
2. Finite dimensional global attractor for dissipative Schrodinger-Boussinesq Equations, J. Math. Anal. Appl., 205 (1), (1997), 107-132. (SCI; EI).
3. Long time behavior of ferromagnetic chain equations: Global attractors and their dimension, Math. Methods Appl. Sci., 20 (15), (1997), 1271-1281. (EI ; SCI Exp.).
4. Attractor for dissipative Klein-Gordon-Schrodinger equations in R3, J. Diff. Eqs., 136 (2), (1997), 356-377. (SCI).
5. Attractor for dissipative Zakharov equations in an unbounded domain, Reviews in Math. Phys., 9(6) (1997), 675-687. (SCI).
6. Abstract parabolic systems and regularized semigroups, Pacific J. of Math., 182 (1), (1998), 183-199. (SCI).
7. Global existence and blowup of solutions to a degenerate Davey-Stewartson equations, J. Math. Phys., 41(5), (2000), 2943-2956. (SCI)
8. Global existence of solutions to the derivative 2D Ginzburg-Landau equation, J. Math. Anal. Appl., 249 (2000), 412-432. (SCI; EI).
9. Global Attractor for Generalized 2D Ginzburg-Landau Equation, In: “Proceedings of PDE 2000”, Clausthal Germany, July 24-28, 2000, ed M. Demuth, Birkhauser Publishing Hause, 2001, pp 197-204. (ISTP)
10. Existence and Decay of Weak Solutions to Degenerate Davey-Stewartson Equations, Acta Math. Scientia, 22 (3) (2002) (SCI Exp).
11. Asymptotic smoothing effect of solutions to weakly dissipative Klein–Gordon–Schrodinger equations, J. Math. Anal. Appl. 282, (2003) 256–265. (SCI)
12. Attractor of dissipative radially symmetric Zakharov equations outside a ball, Math. Meth. Appl. Sci. 27(7), (2004), 803–818. (SCI Exp., EI).
13. Large time behavior to the system of incompressible non-Newtonian fluids in R2,J. Math. Anal. Appl. 298 (2004) 667-676.(SCI).
14. Sharp Rate of Decay for Solutions to Non-Newtonian Fluid in R2, Acta Math. Sinica, 2005, Vol.48, No.6, 1065-1070. (in Chinese)
15. Long Time Behavior for the Weakly Damped Driven Long-Wave--Short-Wave Resonance Equations, J. Differential Equations, 223 (2006) 261-289. (SCI)
16. Regularity of trajectory attractor and upper semicontinuity of global attractor for a 2D non-Newtonian fluid. J. Differential Equations 247 (2009), no. 8, 2331–2363.
17. Asymptotic smoothing effect of solutions to Davey-Stewartson systems on the whole plane. Acta Math. Sin. (Engl. Ser.) 23 (2007), no. 11, 2043–2060.
18. Global well-posedness for a fifth-order shallow water equation in Sobolev spaces. J. Differential Equations 248 (2010), no. 6, 1458–1472
19. Well-posedness of a higher order modified Camassa-Holm equation in spaces of low regularity. J. Evol. Equ. 10 (2010), no. 2, 465–486.
20. Global well-posedness and scattering for the defocusing Hartree equation in R3. J. Math. Anal. Appl. 371 (2010), no. 1, 223–232.
21. Global well-posedness for the Benjamin equation in low regularity. Nonlinear Anal. 73 (2010), no. 6, 1610–1625.
22. The Cauchy problem for Kawahara equation in Sobolev spaces with low regularity. Math. Methods Appl. Sci. 33 (2010), no. 14, 1647–1660.
23.Ill-posedness of Kawahara equation and Kaup-Kupershmidt equation. J. Math. Anal. Appl. 380 (2011), no. 2, 486–492.
24. Low regularity global solutions for the focusing mass-critical NLS in R. SIAM J. Math. Anal. 43 (2011), no. 1, 322–340.
25. Global well-posedness for the mass-critical nonlinear Schrödinger equation on T. J. Differential Equations 250 (2011), no. 6, 2715–2736.
26. Global existence and blow-up phenomena for the weakly dissipative Novikov equation. Nonlinear Anal. 75 (2012), no. 4, 2464–2473.
27. The Cauchy problem for the integrable Novikov equation. J. Differential Equations 253 (2012), no. 1, 298–318.
28. Sharp well-posedness and ill-posedness of a higher-order modified Camassa-Holm equation. Differential Integral Equations 25 (2012), no. 11-12, 1053–1074.
29. The Cauchy problem for the Novikov equation. NoDEA Nonlinear Differential Equations Appl. 20 (2013), no. 3, 1157–1169.
30. Wei Local well-posedness and persistence property for the generalized Novikov equation. Discrete Contin. Dyn. Syst. 34 (2014), no. 2, 803–820.
31. The Cauchy problem for the generalized Camassa-Holm equation in Besov space. J. Differential Equations 256 (2014), no. 8, 2876–2901.
32. The Cauchy problem for the generalized Camassa-Holm equation. Appl. Anal. 93 (2014), no. 7, 1358–1381.
33. The Cauchy problem for the modified two-component Camassa–Holm system in critical Besov space. Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 2014/1/28.
34. Remarks about the inviscid limit for the image-dimension magnetohydrodynamic system in the image type space. Appl. Math. Lett., Vol. 45, 2015, No. 7, 37-40