个人简介
个人简介
刘争光,男,中共党员,1990年生,2013-2018年山东大学计算数学专业博士。2017-2018年国家公派博士生联合培养(普渡大学)。近年来致力于非局部模型快速算法与相场模型的无条件能量稳定算法研究,获得一批应用基础性研究成果。在国际权威期刊“SIAMJSciComput”、“ComputMethodsApplMechEngrg”、“JSciComput”、“ApplMathLett”、“NumerMethodsforPartDiffEqns”等发表SCI收录论文20余篇;先后参与国家科技重大专项2项,国家面上项目1项。
研究兴趣
复杂相场模型数值模拟;非局部、分数阶模型快速算法
开设课程
高等数学1、高等数学2
科研项目
1.国家科技重大专项:化学驱油数值模拟器并行化技术研究及应用(2011.01-2015.12.31)参与
2.国家科技重大专项:非均相复合驱数值模拟软件研制及并行算法研究(2011.01-2015.12.31)参与
3.面上项目:状态约束分数阶最优控制问题的有限元方法,2020.01-2023.12,参与
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
1.Z.G.Liu,X.L.Li:Theexponentialscalarauxiliaryvariable(E-SAV)approachforphasefieldmodelsanditsexplicitcomputing.SIAMJournalonScientificComputing.(Accept).
2.Z.G.Liu,X.L.Li:AParallelCGSBlock-centeredFiniteDifferenceMethodforaNonlinearTime-fractionalParabolicEquation.ComputerMethodsinAppliedMechanicsandEngineering308(2016):330-348.
3.Z.G.Liu,X.L.Li:AFastFiniteDifferenceMethodforaContinuousStaticLinearBond-BasedPeridynamicsModelofMechanics.JournalofScientificComputing74.2(2018):728-742.
4.Z.G.Liu,X.L.Li:Efficientmodifiedtechniquesofinvariantenergyquadratizationapproachforgradientflows.AppliedMathematicsLetters,2019,98:206-214.
5.Z.G.Liu,X.L.Li:Twofastandefficientlinearsemi-implicitapproacheswithunconditionalenergystabilityfornonlocalphasefieldcrystalequation.AppliedNumericalMathematics,2020,150:491-506.
6.Z.G.Liu,X.L.Li:Efficientmodifiedstabilizedinvariantenergyquadratizationapproachesforphase-fieldcrystalequation.NumericalAlgorithms,2019:1-26.
7.Z.G.Liu,A.J.Cheng,andH.Wang:Anhp-GalerkinMethodwithFastSolutionforLinearPeridynamicModelsinOneDimension.Computers&MathematicswithApplications73.7(2017):1546-1565.
8.Z.G.Liu,A.J.Cheng,andX.L.Li:ASecondOrderCrank-NicolsonSchemeforFractionalCattaneoEquationBasedonNewFractionalDerivative.AppliedMathematicsandComputation311(2017):361-374.
9.Z.G.Liu,A.J.Cheng,X.L.LiandH.Wang:AFastSolutionTechniqueforFiniteElementDiscretizationoftheSpace-timeFractionalDiffusionEquation.AppliedNumericalMathematics119(2017):146-163.
10.Z.G.Liu,A.J.Cheng,andX.L.Li:ANovelFiniteDifferenceDiscreteSchemefortheTimeFractionalDiffusion-waveEquation.AppliedNumericalMathematics134(2018):17-30.
11.Z.G.Liu,A.J.Cheng,andX.L.Li:AFastDiscontinuousFiniteElementDiscretizationfortheSpace-timeFractionalDiffusion-waveEquation.NumericalMethodsforPartialDifferentialEquations33.6(2017):2043-2061.
12.Z.G.Liu,A.J.Cheng,andX.L.Li:AFastHighOrderCompactDifferenceMethodfortheFractionalCableEquation.NumericalMethodsforPartialDifferentialEquations34(2018):2237-2266.
13.Z.G.Liu,A.J.Cheng,andX.L.Li:ASecond-orderFiniteDifferenceSchemeforQuasilinearTimeFractionalParabolicEquationBasedonNewFractionalDerivative.InternationalJournalofComputerMathematics95.2(2018):396-411.
14.Z.G.Liu,X.L.LiandX.H.Zhang:Afasthigh-ordercompactdifferencemethodforthefractalmobile/immobiletransportequation.InternationalJournalofComputerMathematics,2019:1-24.
15.Z.G.Liu,X.L.Li:ACrank–NicolsonDifferenceSchemefortheTimeVariableFractionalMobile-immobileAdvection-dispersionEquation.JournalofAppliedMathematicsandComputing56(2018):391-410.
16.Z.G.Liu,X.L.Li:ANovelEquivalentDefinitionofCaputoFractionalDerivativeWithoutSingularKernelandSuper-ConvergenceAnalysis.JournalofMathematicalPhysics.59(5)(2018):051503.
17.X.L.Li,H.X.Rui,andZ.G.Liu:ABlock-centeredFiniteDifferenceMethodforFractionalCattaneoEquation”,NumericalMethodsforPartialDifferentialEquations.34.1(2018):296-316.
18.H.Liu,A.J.Cheng,H.J.Yan,Z.G.LiuandH.Wang:AFastCompactFiniteDifferenceMethodforQuasi-linearTimeFractionalParabolicEquationwithoutSingularKernel,InternationalJournalofComputerMathematics.2019,96(7):1444-1460.
19.X.L.Li,H.X.Rui,andZ.G.Liu,TwoAlternatingDirectionImplicitSpectralMethodsforTwo-dimensionalDistributed-orderDifferentialEquation.NumericalAlgorithms2019,82(1):321-347.
20.HQiao,Z.G.Liu,andA.J.Cheng.Twounconditionallystabledifferenceschemesfortimedistributed-orderdifferentialequationbasedonCaputo–Fabriziofractionalderivative.AdvancesinDifferenceEquations,2020,2020(1):36.
21.HQiao,Z.G.Liu,andA.J.Cheng.AfastcompactfinitedifferencemethodforfractionalCattaneoequationbasedonCaputo–Fabriziofractionalderivative.MathematicalproblemsinEngineering.2020:3842946.