当前位置:
X-MOL 学术
›
Nat. Commun.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Control of structural flexibility of layered-pillared metal-organic frameworks anchored at surfaces.
Nature Communications ( IF 14.7 ) Pub Date : 2019-01-21 , DOI: 10.1038/s41467-018-08285-5 Suttipong Wannapaiboon 1, 2 , Andreas Schneemann 1 , Inke Hante 3 , Min Tu 3, 4 , Konstantin Epp 1 , Anna Lisa Semrau 1 , Christian Sternemann 5 , Michael Paulus 5 , Samuel J Baxter 6 , Gregor Kieslich 1 , Roland A Fischer 1
Nature Communications ( IF 14.7 ) Pub Date : 2019-01-21 , DOI: 10.1038/s41467-018-08285-5 Suttipong Wannapaiboon 1, 2 , Andreas Schneemann 1 , Inke Hante 3 , Min Tu 3, 4 , Konstantin Epp 1 , Anna Lisa Semrau 1 , Christian Sternemann 5 , Michael Paulus 5 , Samuel J Baxter 6 , Gregor Kieslich 1 , Roland A Fischer 1
Affiliation
Flexible metal-organic frameworks (MOFs) are structurally flexible, porous, crystalline solids that show a structural transition in response to a stimulus. If MOF-based solid-state and microelectronic devices are to be capable of leveraging such structural flexibility, then the integration of MOF thin films into a device configuration is crucial. Here we report the targeted and precise anchoring of Cu-based alkylether-functionalised layered-pillared MOF crystallites onto substrates via stepwise liquid-phase epitaxy. The structural transformation during methanol sorption is monitored by in-situ grazing incidence X-ray diffraction. Interestingly, spatially-controlled anchoring of the flexible MOFs on the surface induces a distinct structural responsiveness which is different from the bulk powder and can be systematically controlled by varying the crystallite characteristics, for instance dimensions and orientation. This fundamental understanding of thin-film flexibility is of paramount importance for the rational design of MOF-based devices utilising the structural flexibility in specific applications such as selective sensors.
中文翻译:
控制锚固在表面的分层堆积的金属有机框架的结构柔韧性。
柔性金属有机骨架(MOF)是结构柔性,多孔的结晶固体,可响应刺激而显示出结构转变。如果基于MOF的固态和微电子设备能够利用这种结构灵活性,那么将MOF薄膜集成到设备配置中至关重要。在这里,我们报告通过逐步液相外延有针对性和精确锚固的铜基烷基醚官能化的分层堆积MOF晶体到基板上。甲醇吸附过程中的结构转变通过原位掠入射X射线衍射进行监测。有趣的是,柔性MOF在空间上的空间控制锚固在表面上引起了明显的结构响应,这与散装粉末不同,可以通过改变微晶特性(例如尺寸和方向)来系统地控制。对薄膜柔韧性的这种基本理解对于基于MOF的器件的合理设计至关重要,该器件在特定应用(例如选择性传感器)中利用结构柔韧性。
更新日期:2019-01-23
中文翻译:
控制锚固在表面的分层堆积的金属有机框架的结构柔韧性。
柔性金属有机骨架(MOF)是结构柔性,多孔的结晶固体,可响应刺激而显示出结构转变。如果基于MOF的固态和微电子设备能够利用这种结构灵活性,那么将MOF薄膜集成到设备配置中至关重要。在这里,我们报告通过逐步液相外延有针对性和精确锚固的铜基烷基醚官能化的分层堆积MOF晶体到基板上。甲醇吸附过程中的结构转变通过原位掠入射X射线衍射进行监测。有趣的是,柔性MOF在空间上的空间控制锚固在表面上引起了明显的结构响应,这与散装粉末不同,可以通过改变微晶特性(例如尺寸和方向)来系统地控制。对薄膜柔韧性的这种基本理解对于基于MOF的器件的合理设计至关重要,该器件在特定应用(例如选择性传感器)中利用结构柔韧性。