当前位置:
X-MOL 学术
›
Nat. Rev. Mol. Cell Biol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Crosstalk between metabolism and circadian clocks.
Nature Reviews Molecular Cell Biology ( IF 81.3 ) Pub Date : 2019-04-01 , DOI: 10.1038/s41580-018-0096-9 Hans Reinke 1, 2 , Gad Asher 3
Nature Reviews Molecular Cell Biology ( IF 81.3 ) Pub Date : 2019-04-01 , DOI: 10.1038/s41580-018-0096-9 Hans Reinke 1, 2 , Gad Asher 3
Affiliation
Humans, like all mammals, partition their daily behaviour into activity (wakefulness) and rest (sleep) phases that differ largely in their metabolic requirements. The circadian clock evolved as an autonomous timekeeping system that aligns behavioural patterns with the solar day and supports the body functions by anticipating and coordinating the required metabolic programmes. The key component of this synchronization is a master clock in the brain, which responds to light-darkness cues from the environment. However, to achieve circadian control of the entire organism, each cell of the body is equipped with its own circadian oscillator that is controlled by the master clock and confers rhythmicity to individual cells and organs through the control of rate-limiting steps of metabolic programmes. Importantly, metabolic regulation is not a mere output function of the circadian system, but nutrient, energy and redox levels signal back to cellular clocks in order to reinforce circadian rhythmicity and to adapt physiology to temporal tissue-specific needs. Thus, multiple systemic and molecular mechanisms exist that connect the circadian clock with metabolism at all levels, from cellular organelles to the whole organism, and deregulation of this circadian-metabolic crosstalk can lead to various pathologies.
中文翻译:
新陈代谢和生物钟之间的串扰。
与所有哺乳动物一样,人类将其日常行为划分为活动(清醒)和休息(睡眠)阶段,这两个阶段的代谢需求差异很大。生物钟演变为一种自主计时系统,可将行为模式与太阳日保持一致,并通过预测和协调所需的代谢程序来支持身体功能。这种同步的关键组成部分是大脑中的主时钟,它响应来自环境的明暗线索。然而,为了实现对整个生物体的昼夜节律控制,身体的每个细胞都配备了自己的昼夜节律振荡器,由主时钟控制,并通过控制代谢程序的限速步骤赋予单个细胞和器官节律性。重要的,代谢调节不仅仅是昼夜节律系统的输出功能,而是营养、能量和氧化还原水平向细胞时钟发出信号,以加强昼夜节律并使生理学适应时间组织的特定需求。因此,存在多种系统和分子机制,将生物钟与各个水平的新陈代谢联系起来,从细胞器到整个生物体,这种昼夜代谢串扰的失调会导致各种病理。
更新日期:2019-05-16
中文翻译:
新陈代谢和生物钟之间的串扰。
与所有哺乳动物一样,人类将其日常行为划分为活动(清醒)和休息(睡眠)阶段,这两个阶段的代谢需求差异很大。生物钟演变为一种自主计时系统,可将行为模式与太阳日保持一致,并通过预测和协调所需的代谢程序来支持身体功能。这种同步的关键组成部分是大脑中的主时钟,它响应来自环境的明暗线索。然而,为了实现对整个生物体的昼夜节律控制,身体的每个细胞都配备了自己的昼夜节律振荡器,由主时钟控制,并通过控制代谢程序的限速步骤赋予单个细胞和器官节律性。重要的,代谢调节不仅仅是昼夜节律系统的输出功能,而是营养、能量和氧化还原水平向细胞时钟发出信号,以加强昼夜节律并使生理学适应时间组织的特定需求。因此,存在多种系统和分子机制,将生物钟与各个水平的新陈代谢联系起来,从细胞器到整个生物体,这种昼夜代谢串扰的失调会导致各种病理。