Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Theory of Transport-Induced-Charge Electroosmotic Pumping toward Alternating Current Resistive Pulse Sensing
ACS Sensors ( IF 8.2 ) Pub Date : 2018-10-23 00:00:00 , DOI: 10.1021/acssensors.8b00635 Wei-Lun Hsu 1 , Junho Hwang 1 , Hirofumi Daiguji 1
ACS Sensors ( IF 8.2 ) Pub Date : 2018-10-23 00:00:00 , DOI: 10.1021/acssensors.8b00635 Wei-Lun Hsu 1 , Junho Hwang 1 , Hirofumi Daiguji 1
Affiliation
In this work, we study transport-induced-charge electroosmosis toward alternating current resistive pulse sensing for the next generation of biomedical applications. Transport-induced-charge electroosmosis, being a new class of electrokinetic phenomenon, occurs as a salt concentration gradient works in synergy with an electric field in ultrathin nanopores. Apart from the conventional electric double layer-governed electroosmotic flow in which the flow behavior is subject to the surface charge, it is found that the transport-induced-charge electroosmotic flow behaves independently of surface charge magnitude but can be linearly regulated by the bulk salt concentration bias. The reversal of the electric field simultaneously inverses the induced charge allowing the establishment of a unidirectional flow under the application of a periodic alternating current field. This unique phenomenon permits continuous water and nanoparticles pumping through a two-dimensional material nanopore in spite of the reversal of the electric field. Built upon this mechanism, we propose a theoretical prototype of alternating current resistive pulse sensing in a two-dimensional nanopore system.
中文翻译:
输电感应电渗流向交流电阻脉冲传感的理论
在这项工作中,我们研究了面向下一代生物医学应用的交流感应脉冲传感的运输感应电荷电渗。传输感应电荷电渗是一种新型的电动现象,是由于盐浓度梯度与超薄纳米孔中的电场协同作用而发生的。除了传统的双层控制电渗流(其中流动行为受表面电荷影响)之外,还发现运输感应电荷电渗流的行为与表面电荷量无关,但可以由本体盐线性调节浓度偏差。电场的逆转同时使感应电荷反转,从而允许在施加周期性交流电场的情况下建立单向流。尽管电场反向,这种独特的现象仍允许连续的水和纳米颗粒泵送通过二维材料纳米孔。基于此机制,我们提出了二维纳米孔系统中交流电阻脉冲感测的理论原型。
更新日期:2018-10-23
中文翻译:
输电感应电渗流向交流电阻脉冲传感的理论
在这项工作中,我们研究了面向下一代生物医学应用的交流感应脉冲传感的运输感应电荷电渗。传输感应电荷电渗是一种新型的电动现象,是由于盐浓度梯度与超薄纳米孔中的电场协同作用而发生的。除了传统的双层控制电渗流(其中流动行为受表面电荷影响)之外,还发现运输感应电荷电渗流的行为与表面电荷量无关,但可以由本体盐线性调节浓度偏差。电场的逆转同时使感应电荷反转,从而允许在施加周期性交流电场的情况下建立单向流。尽管电场反向,这种独特的现象仍允许连续的水和纳米颗粒泵送通过二维材料纳米孔。基于此机制,我们提出了二维纳米孔系统中交流电阻脉冲感测的理论原型。