当前位置: X-MOL 学术ACS Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced Direct Electron Transfer of Fructose Dehydrogenase Rationally Immobilized on a 2-Aminoanthracene Diazonium Cation Grafted Single-Walled Carbon Nanotube Based Electrode
ACS Catalysis ( IF 11.3 ) Pub Date : 2018-09-27 00:00:00 , DOI: 10.1021/acscatal.8b02729
Paolo Bollella 1 , Yuya Hibino 2 , Kenji Kano 2 , Lo Gorton 3 , Riccarda Antiochia 1
Affiliation  

In this paper, an efficient direct electron transfer (DET) reaction was achieved between fructose dehydrogenase (FDH) and a glassy-carbon electrode (GCE) upon which anthracene-modified single-walled carbon nanotubes were deposited. The SWCNTs were activated in situ with a diazonium salt synthesized through the reaction of 2-aminoanthracene with NaNO2 in acidic media (0.5 M HCl) for 5 min at 0 °C. After the in situ reaction, the 2-aminoanthracene diazonium salt was electrodeposited by running cyclic voltammograms from +1000 to −1000 mV. The anthracene-SWCNT-modified GCE was further incubated in an FDH solution, allowing enzyme adsorption. Cyclic voltammograms of the FDH-modified electrode revealed two couples of redox waves possibly ascribed to the heme c1 and heme c3 of the cytochrome domain. In the presence of 10 mM fructose two catalytic waves could clearly be seen and were correlated with two heme cs (heme c1 and c2), with a maximum current density of 485 ± 21 μA cm–2 at 0.4 V at a sweep rate of 10 mV s–1. In contrast, for the plain SWCNT-modified GCE only one catalytic wave and one couple of redox waves were observed. Adsorbing FDH directly onto a GCE showed no non-turnover electrochemistry of FDH, and in the presence of fructose only a slight catalytic effect could be seen. These differences can be explained by considering the hydrophobic pocket close to heme c1, heme c2, and heme c3 of the cytochrome domain at which the anthracenyl aromatic structure could interact through π–π interactions with the aromatic side chains of the amino acids present in the hydrophobic pocket of FDH.

中文翻译:

合理固定在2-氨基蒽重氮阳离子接枝的单壁碳纳米管电极上的果糖脱氢酶的增强的直接电子转移

在本文中,果糖脱氢酶(FDH)与玻璃碳电极(GCE)之间实现了有效的直接电子转移(DET)反应,在该电极上沉积了蒽改性的单壁碳纳米管。SWCNTs用重氮盐原位活化,该重氮盐是通过2-氨基蒽与NaNO 2在酸性介质(0.5 M HCl)中在0°C下反应5分钟而合成的。原位反应后,通过运行+1000至-1000 mV的循环伏安图,对2-氨基蒽重氮盐进行电沉积。蒽-SWCNT修饰的GCE在FDH溶液中进一步温育,使酶吸附。FDH修饰电极的循环伏安图显示了可能归因于血红素c 1和血红素的两对氧化还原波c 3的细胞色素结构域。在存在10 mM果糖的情况下,可以清楚地看到两个催化波,并与两个血红素c s(血红素c 1c 2)相关,在0.4 V扫描时的最大电流密度为485±21μAcm –2速率为10 mV s –1。相反,对于普通的SWCNT改性的GCE,仅观察到一个催化波和一对氧化还原波。将FDH直接吸附到GCE上并没有显示FDH的非翻转电化学,并且在果糖的存在下,只能看到轻微的催化作用。这些差异可以通过考虑靠近血红素c 1(血红素)的疏水口袋来解释。细胞色素结构域的c 2和血红素c 3,蒽烯基芳族结构可通过π-π相互作用与FDH疏水口袋中氨基酸的芳族侧链相互作用。
更新日期:2018-09-27
down
wechat
bug