当前位置:
X-MOL 学术
›
J. Phys. Chem. C
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Unraveling the Passivation Process of PbI2 to Enhance the Efficiency of Planar Perovskite Solar Cells
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2018-09-12 , DOI: 10.1021/acs.jpcc.8b08075 Biao Shi 1, 2, 3, 4 , Xin Yao 1, 2, 3, 4 , Fuhua Hou 1, 2, 3, 4 , Sheng Guo 1, 2, 3, 4 , Yucheng Li 1, 2, 3, 4 , Changchun Wei 1, 2, 3, 4 , Yi Ding 1, 2, 3, 4 , Yuelong Li 1, 2, 3, 4 , Ying Zhao 1, 2, 3, 4 , Xiaodan Zhang 1, 2, 3, 4
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2018-09-12 , DOI: 10.1021/acs.jpcc.8b08075 Biao Shi 1, 2, 3, 4 , Xin Yao 1, 2, 3, 4 , Fuhua Hou 1, 2, 3, 4 , Sheng Guo 1, 2, 3, 4 , Yucheng Li 1, 2, 3, 4 , Changchun Wei 1, 2, 3, 4 , Yi Ding 1, 2, 3, 4 , Yuelong Li 1, 2, 3, 4 , Ying Zhao 1, 2, 3, 4 , Xiaodan Zhang 1, 2, 3, 4
Affiliation
There appears to be a controversy on whether remnant PbI2 is beneficial to the performance of perovskite solar cells (PSCs). We have shown that PSCs with residual PbI2 deposited by one-step antisolvent solution and two-step evaporation-solution method both have shown better performance than those without excess PbI2. X-ray diffraction with diverse X-ray incident angles combined with scanning electron microscopy and secondary-ion mass spectrometry is employed to identify the position of remnant PbI2. It reveals that residual PbI2 is located at grain boundaries near the perovskite/hole-transporting layer interface area for the one-step antisolvent solution method, and the two-step evaporation-solution method situates the excess PbI2 at grain boundaries and the electron transport layer/perovskite interface. The cell performance implies that grain boundary passivation is beneficial for promoting short-circuit current density, while interface passivation is more favorable to enhance open-circuit voltage and fill factor. The revealed passivation process indicates a deep understanding of remnant PbI2 and contributes to the development of PSCs.
中文翻译:
阐明PbI 2的钝化过程以提高平面钙钛矿太阳能电池的效率
关于残留的PbI 2是否对钙钛矿型太阳能电池(PSC)的性能有益似乎存在争议。我们已经表明,通过一步反溶剂溶液和两步蒸发溶液法沉积的具有残留PbI 2的PSC都比没有过量PbI 2的PSC具有更好的性能。采用具有不同X射线入射角的X射线衍射技术结合扫描电子显微镜和二次离子质谱法来鉴定残留PbI 2的位置。结果表明残留的PbI 2对于单步抗溶剂溶液法,PbI 2位于钙钛矿/空穴传输层界面区域附近的晶界处,而两步蒸发-固溶法则将过量的PbI 2位于晶界和电子传输层/钙钛矿界面处。电池性能表明晶界钝化有利于提高短路电流密度,而界面钝化则更有利于提高开路电压和填充系数。揭示的钝化过程表明对残留的PbI 2有深入的了解,并有助于PSC的发展。
更新日期:2018-09-13
中文翻译:
阐明PbI 2的钝化过程以提高平面钙钛矿太阳能电池的效率
关于残留的PbI 2是否对钙钛矿型太阳能电池(PSC)的性能有益似乎存在争议。我们已经表明,通过一步反溶剂溶液和两步蒸发溶液法沉积的具有残留PbI 2的PSC都比没有过量PbI 2的PSC具有更好的性能。采用具有不同X射线入射角的X射线衍射技术结合扫描电子显微镜和二次离子质谱法来鉴定残留PbI 2的位置。结果表明残留的PbI 2对于单步抗溶剂溶液法,PbI 2位于钙钛矿/空穴传输层界面区域附近的晶界处,而两步蒸发-固溶法则将过量的PbI 2位于晶界和电子传输层/钙钛矿界面处。电池性能表明晶界钝化有利于提高短路电流密度,而界面钝化则更有利于提高开路电压和填充系数。揭示的钝化过程表明对残留的PbI 2有深入的了解,并有助于PSC的发展。