当前位置:
X-MOL 学术
›
Nano Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction
Nano Letters ( IF 9.6 ) Pub Date : 2016-01-19 00:00:00 , DOI: 10.1021/acs.nanolett.5b04331 Gonglan Ye 1 , Yongji Gong 2 , Junhao Lin 3, 4 , Bo Li 1 , Yongmin He 1 , Sokrates T. Pantelides 3, 4 , Wu Zhou 3 , Robert Vajtai 1 , Pulickel M. Ajayan 1, 2
Nano Letters ( IF 9.6 ) Pub Date : 2016-01-19 00:00:00 , DOI: 10.1021/acs.nanolett.5b04331 Gonglan Ye 1 , Yongji Gong 2 , Junhao Lin 3, 4 , Bo Li 1 , Yongmin He 1 , Sokrates T. Pantelides 3, 4 , Wu Zhou 3 , Robert Vajtai 1 , Pulickel M. Ajayan 1, 2
Affiliation
MoS2 is a promising and low-cost material for electrochemical hydrogen production due to its high activity and stability during the reaction. However, the efficiency of hydrogen production is limited by the amount of active sites, for example, edges, in MoS2. Here, we demonstrate that oxygen plasma exposure and hydrogen treatment on pristine monolayer MoS2 could introduce more active sites via the formation of defects within the monolayer, leading to a high density of exposed edges and a significant improvement of the hydrogen evolution activity. These as-fabricated defects are characterized at the scale from macroscopic continuum to discrete atoms. Our work represents a facile method to increase the hydrogen production in electrochemical reaction of MoS2 via defect engineering, and helps to understand the catalytic properties of MoS2.
中文翻译:
缺陷工程单层MoS 2可改善氢释放反应
MoS 2由于其在反应过程中的高活性和稳定性,是一种用于电化学制氢的有前途且低成本的材料。但是,制氢的效率受到MoS 2中活性位点(例如边缘)的数量的限制。在这里,我们证明原始等离子体单层MoS 2上的氧等离子体暴露和氢处理可以通过在单层内形成缺陷来引入更多的活性位点,从而导致暴露边缘的高密度和氢释放活性的显着改善。这些加工缺陷的特征是从宏观连续体到离散原子。我们的工作代表了一种简便的方法来增加MoS电化学反应中的产氢量2通过缺陷工程,并有助于了解MoS 2的催化性能。
更新日期:2016-01-19
中文翻译:
缺陷工程单层MoS 2可改善氢释放反应
MoS 2由于其在反应过程中的高活性和稳定性,是一种用于电化学制氢的有前途且低成本的材料。但是,制氢的效率受到MoS 2中活性位点(例如边缘)的数量的限制。在这里,我们证明原始等离子体单层MoS 2上的氧等离子体暴露和氢处理可以通过在单层内形成缺陷来引入更多的活性位点,从而导致暴露边缘的高密度和氢释放活性的显着改善。这些加工缺陷的特征是从宏观连续体到离散原子。我们的工作代表了一种简便的方法来增加MoS电化学反应中的产氢量2通过缺陷工程,并有助于了解MoS 2的催化性能。