当前位置: X-MOL 学术Sci. Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computed terahertz near-field mapping of molecular resonances of lactose stereo-isomer impurities with sub-attomole sensitivity.
Scientific Reports ( IF 3.8 ) Pub Date : 2019-11-15 , DOI: 10.1038/s41598-019-53366-0
Kiwon Moon 1, 2 , Youngwoong Do 1, 3 , Hongkyu Park 1, 4 , Jeonghoi Kim 1, 4 , Hyuna Kang 1, 5 , Gyuseok Lee 1 , Jin-Ha Lim 1 , Jin-Woo Kim 1, 6 , Haewook Han 1
Affiliation  

Terahertz near-field microscopy (THz-NFM) could locally probe low-energy molecular vibration dynamics below diffraction limits, showing promise to decipher intermolecular interactions of biomolecules and quantum matters with unique THz vibrational fingerprints. However, its realization has been impeded by low spatial and spectral resolutions and lack of theoretical models to quantitatively analyze near-field imaging. Here, we show that THz scattering-type scanning near-field optical microscopy (THz s-SNOM) with a theoretical model can quantitatively measure and image such low-energy molecular interactions, permitting computed spectroscopic near-field mapping of THz molecular resonance spectra. Using crystalline-lactose stereo-isomer (anomer) mixtures (i.e., α-lactose (≥95%, w/w) and β-lactose (≤4%, w/w)), THz s-SNOM resolved local intermolecular vibrations of both anomers with enhanced spatial and spectral resolutions, yielding strong resonances to decipher conformational fingerprint of the trace β-anomer impurity. Its estimated sensitivity was ~0.147 attomoles in ~8 × 10-4 μm3 interaction volume. Our THz s-SNOM platform offers a new path for ultrasensitive molecular fingerprinting of complex mixtures of biomolecules or organic crystals with markedly enhanced spatio-spectral resolutions. This could open up significant possibilities of THz technology in many fields, including biology, chemistry and condensed matter physics as well as semiconductor industries where accurate quantitative mappings of trace isomer impurities are critical but still challenging.

中文翻译:

太赫兹乳糖近端异构体杂质分子共振的太赫兹近场作图。

太赫兹近场显微镜(THz-NFM)可以在低于衍射极限的条件下局部探测低能分子振动动力学,显示出有望利用独特的THz振动指纹来破译生物分子和量子物质之间的分子间相互作用。但是,其实现受到空间和光谱分辨率低以及缺乏定量分析近场成像的理论模型的阻碍。在这里,我们显示具有理论模型的THz散射型扫描近场光学显微镜(THz s-SNOM)可以定量测量和成像这种低能分子相互作用,从而允许对THz分子共振谱进行计算光谱近场映射。使用结晶乳糖立体异构体(异构体)混合物(即α-乳糖(≥95%,w / w)和β-乳糖(≤4%,w / w)),太赫兹s-SNOM解决了两种异构体的局部分子间振动,具有增强的空间和光谱分辨率,产生了强烈的共振,从而破译了痕量β-异构体杂质的构象指纹。在约8×10-4μm3的相互作用体积中,其估计的敏感性为〜0.147原子。我们的THz s-SNOM平台为生物分子或有机晶体的复杂混合物的超灵敏分子指纹图谱提供了一条新途径,并显着提高了空间光谱分辨率。这可能会在许多领域打开太赫兹技术的巨大可能性,包括生物学,化学和凝聚态物理以及半导体行业,在这些行业中,痕量异构体杂质的准确定量映射至关重要,但仍具有挑战性。产生强共振以破译痕量β-异头物杂质的构象指纹。在约8×10-4μm3的相互作用体积中,其估计的敏感性为〜0.147原子。我们的THz s-SNOM平台为生物分子或有机晶体的复杂混合物的超灵敏分子指纹图谱提供了一条新途径,并显着提高了空间光谱分辨率。这可能会在许多领域打开太赫兹技术的巨大可能性,包括生物学,化学和凝聚态物理以及半导体行业,在这些行业中,痕量异构体杂质的准确定量映射至关重要,但仍具有挑战性。产生强共振以破译痕量β-异头物杂质的构象指纹。在约8×10-4μm3的相互作用体积中,其估计的敏感性为〜0.147原子。我们的THz s-SNOM平台为生物分子或有机晶体的复杂混合物的超灵敏分子指纹图谱提供了一条新途径,并显着提高了空间光谱分辨率。这可能会在许多领域打开太赫兹技术的巨大可能性,包括生物学,化学和凝聚态物理以及半导体行业,在这些行业中,痕量异构体杂质的准确定量映射至关重要,但仍具有挑战性。我们的THz s-SNOM平台为生物分子或有机晶体的复杂混合物的超灵敏分子指纹图谱提供了一条新途径,并显着提高了空间光谱分辨率。这可能会在许多领域打开太赫兹技术的巨大可能性,包括生物学,化学和凝聚态物理以及半导体行业,在这些行业中,痕量异构体杂质的准确定量映射至关重要,但仍具有挑战性。我们的THz s-SNOM平台为生物分子或有机晶体的复杂混合物的超灵敏分子指纹图谱提供了一条新途径,并显着提高了空间光谱分辨率。这可能会在许多领域打开太赫兹技术的巨大可能性,包括生物学,化学和凝聚态物理以及半导体行业,在这些行业中,痕量异构体杂质的准确定量映射至关重要,但仍具有挑战性。
更新日期:2019-11-15
down
wechat
bug