当前位置:
X-MOL 学术
›
J. Phys. Chem. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Band Gap Engineering in MASnBr3 and CsSnBr3 Perovskites: Mechanistic Insights through the Application of Pressure.
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2019-11-19 , DOI: 10.1021/acs.jpclett.9b03046 Mauro Coduri 1 , Timothy A Strobel 2 , Marek Szafrański 3 , Andrzej Katrusiak 4 , Arup Mahata 5, 6 , Federico Cova 7 , Sara Bonomi 1 , Edoardo Mosconi 5 , Filippo De Angelis 5, 8 , Lorenzo Malavasi 1
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2019-11-19 , DOI: 10.1021/acs.jpclett.9b03046 Mauro Coduri 1 , Timothy A Strobel 2 , Marek Szafrański 3 , Andrzej Katrusiak 4 , Arup Mahata 5, 6 , Federico Cova 7 , Sara Bonomi 1 , Edoardo Mosconi 5 , Filippo De Angelis 5, 8 , Lorenzo Malavasi 1
Affiliation
Here we report on the first structural and optical high-pressure investigation of MASnBr3 (MA = [CH3NH3]+) and CsSnBr3 halide perovskites. A massive red shift of 0.4 eV for MASnBr3 and 0.2 eV for CsSnBr3 is observed within 1.3 to 1.5 GPa from absorption spectroscopy, followed by a huge blue shift of 0.3 and 0.5 eV, respectively. Synchrotron powder diffraction allowed us to correlate the upturn in the optical properties trend (onset of blue shift) with structural phase transitions from cubic to orthorhombic in MASnBr3 and from tetragonal to monoclinic for CsSnBr3. Density functional theory calculations indicate a different underlying mechanism affecting the band gap evolution with pressure, a key role of metal-halide bond lengths for CsSnBr3 and cation orientation for MASnBr3, thus showing the impact of a different A-cation on the pressure response. Finally, the investigated phases, differently from the analogous Pb-based counterparts, are robust against amorphization showing defined diffraction up to the maximum pressure used in the experiments.
中文翻译:
MASnBr3和CsSnBr3钙钛矿中的带隙工程:通过施加压力获得的力学见解。
在这里,我们报告有关MASnBr3(MA = [CH3NH3] +)和CsSnBr3卤化物钙钛矿的首次结构和光学高压研究。从吸收光谱在1.3至1.5 GPa范围内观察到MASnBr3的大红移为0.4 eV,CsSnBr3的大红移为0.2 eV,随后分别发生了0.3 eV和0.5 eV的大蓝移。同步加速器粉末衍射使我们能够将光学性质趋势的上升(蓝移的发生)与MAsnBr3中从立方到正交的结构相变以及CsSnBr3从四方到单斜的结构相变相关。密度泛函理论计算表明,影响带隙随压力变化的根本机制不同,CsSnBr3的金属卤化物键长和MASnBr3的阳离子取向起关键作用,从而显示出不同的A-阳离子对压力响应的影响。
更新日期:2019-11-20
中文翻译:
MASnBr3和CsSnBr3钙钛矿中的带隙工程:通过施加压力获得的力学见解。
在这里,我们报告有关MASnBr3(MA = [CH3NH3] +)和CsSnBr3卤化物钙钛矿的首次结构和光学高压研究。从吸收光谱在1.3至1.5 GPa范围内观察到MASnBr3的大红移为0.4 eV,CsSnBr3的大红移为0.2 eV,随后分别发生了0.3 eV和0.5 eV的大蓝移。同步加速器粉末衍射使我们能够将光学性质趋势的上升(蓝移的发生)与MAsnBr3中从立方到正交的结构相变以及CsSnBr3从四方到单斜的结构相变相关。密度泛函理论计算表明,影响带隙随压力变化的根本机制不同,CsSnBr3的金属卤化物键长和MASnBr3的阳离子取向起关键作用,从而显示出不同的A-阳离子对压力响应的影响。