当前位置: X-MOL 学术Sol. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photothermal-responsive tungsten bronze/recycled cellulose triacetate porous fiber membranes for efficient light-driven interfacial water evaporation
Solar Energy ( IF 6.0 ) Pub Date : 2019-12-01 , DOI: 10.1016/j.solener.2019.10.084
Saba Naseem , Chang-Mou Wu , Tolesa Fita Chala

Abstract Solar-driven steam generation is a common strategy for clean water production and wastewater treatment. Tungsten-oxide-based composites have lately gained significant attention due to their capability of absorbing near-infrared (NIR) light and transforming it into heat for evaporating water. The strong surface plasma resonances and intervalence charge transfer of these composites result in high photoabsorption in a wide NIR spectrum. Here, we fabricate combined rubidium tungsten bronze and recycled triacetate cellulose (RbxWO3/rTAC) porous fiber membranes without any supporting components, via solution electrospinning. The as-prepared RbxWO3/rTAC porous fiber membranes float on the water surface because of their low weight and hydrophobicity. RbxWO3 (0, 5, 10, 15, and 20 wt%) was incorporated into a recycled triacetate cellulose (rTAC) matrix, and its efficiency for light-driven water evaporation was calculated. The rTAC polymer, significantly contributes toward its desirable wetting properties and its porous structure, which are favorable for solar steam generation. The results showed that the evaporation efficiency of RbxWO3/rTAC fiber membranes with an optimized 15 wt% of RbxWO3 nanorods reached 90.4 ± 2.1%, which is considerably greater than that of pure rTAC fiber membranes and of pure water. A great potential has also been proved by simulating solar exposure, with a water conversion efficiency of approximately 73.6%. Thus, RbxWO3/rTAC photothermal fiber membranes can find applications in water purification, desalination, and steam power generation.

中文翻译:

用于高效光驱动界面水蒸发的光热响应钨青铜/回收三醋酸纤维素多孔纤维膜

摘要 太阳能驱动蒸汽发电是清洁水生产和废水处理的常用策略。氧化钨基复合材料由于具有吸收近红外 (NIR) 光并将其转化为热量以蒸发水的能力,最近受到了广泛关注。这些复合材料的强表面等离子体共振和间隔电荷转移导致宽 NIR 光谱中的高光吸收。在这里,我们通过溶液静电纺丝技术制造了组合铷钨青铜和回收的三醋酸纤维素 (RbxWO3/rTAC) 多孔纤维膜,没有任何支撑成分。所制备的 RbxWO3/rTAC 多孔纤维膜因其重量轻和疏水性而漂浮在水面上。RbxWO3 (0, 5, 10, 15, 和 20 wt%) 并入回收的三醋酸纤维素 (rTAC) 基质中,并计算其光驱动水蒸发的效率。rTAC 聚合物显着有助于其理想的润湿性能和多孔结构,这有利于太阳能蒸汽的产生。结果表明,RbxWO3/rTAC 纤维膜与优化的 15 wt% RbxWO3 纳米棒的蒸发效率达到 90.4 ± 2.1%,远高于纯 rTAC 纤维膜和纯水的蒸发效率。通过模拟太阳照射也证明了巨大的潜力,水的转化效率约为 73.6%。因此,RbxWO3/rTAC 光热纤维膜可用于水净化、海水淡化和蒸汽发电。并计算了其光驱动水蒸发效率。rTAC 聚合物显着有助于其理想的润湿性能和多孔结构,这有利于太阳能蒸汽的产生。结果表明,RbxWO3/rTAC 纤维膜与优化的 15 wt% RbxWO3 纳米棒的蒸发效率达到 90.4 ± 2.1%,远高于纯 rTAC 纤维膜和纯水的蒸发效率。通过模拟太阳照射也证明了巨大的潜力,水的转化效率约为 73.6%。因此,RbxWO3/rTAC 光热纤维膜可应用于水净化、海水淡化和蒸汽发电。并计算了其光驱动水蒸发效率。rTAC 聚合物显着有助于其理想的润湿性能和多孔结构,这有利于太阳能蒸汽的产生。结果表明,RbxWO3/rTAC 纤维膜与优化的 15 wt% RbxWO3 纳米棒的蒸发效率达到 90.4 ± 2.1%,远高于纯 rTAC 纤维膜和纯水的蒸发效率。通过模拟太阳照射也证明了巨大的潜力,水的转化效率约为 73.6%。因此,RbxWO3/rTAC 光热纤维膜可用于水净化、海水淡化和蒸汽发电。有利于太阳能蒸汽发电。结果表明,RbxWO3/rTAC 纤维膜与优化的 15 wt% RbxWO3 纳米棒的蒸发效率达到 90.4 ± 2.1%,远高于纯 rTAC 纤维膜和纯水的蒸发效率。通过模拟太阳照射也证明了巨大的潜力,水的转化效率约为 73.6%。因此,RbxWO3/rTAC 光热纤维膜可用于水净化、海水淡化和蒸汽发电。有利于太阳能蒸汽发电。结果表明,RbxWO3/rTAC 纤维膜与优化的 15 wt% RbxWO3 纳米棒的蒸发效率达到 90.4 ± 2.1%,远高于纯 rTAC 纤维膜和纯水的蒸发效率。通过模拟太阳照射也证明了巨大的潜力,水的转化效率约为 73.6%。因此,RbxWO3/rTAC 光热纤维膜可用于水净化、海水淡化和蒸汽发电。通过模拟太阳照射也证明了巨大的潜力,水的转化效率约为 73.6%。因此,RbxWO3/rTAC 光热纤维膜可用于水净化、海水淡化和蒸汽发电。通过模拟太阳照射也证明了巨大的潜力,水的转化效率约为 73.6%。因此,RbxWO3/rTAC 光热纤维膜可用于水净化、海水淡化和蒸汽发电。
更新日期:2019-12-01
down
wechat
bug