当前位置: X-MOL 学术ACS Appl. Polym. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Range-Broadening Ultraviolet-Blocking Regulation of Cellulose Nanopaper via Surface Self-Absorption with Poly(methyl methacrylate)/Avobenzone
ACS Applied Polymer Materials ( IF 4.4 ) Pub Date : 2019-10-29 , DOI: 10.1021/acsapm.9b00686
Xinping Li , Xin Zhang , Nan Wang , Hui Chang , Yaoyu Wang 1 , Zhao Zhang 1
Affiliation  

Cellulose nanopaper-based materials with recyclability and excellent optical properties have recently received increasing attention. A series of lignin-containing (17.2, 14.7, 7.3, 4.9, and 1.3% by wt) pristine nanopapers (LNPs) were obtained through self-absorption of poly(methyl methacrylate) (PMMA)/avobenzone (AVB) to produce cellulose nanopapers (LPANPs) with range-broadening and ultraviolet (UV) blocking extending from UVB (290–320 nm) to UVA (320–400 nm). SEM results indicated that PMMA/AVB presented a microspherical morphology (150–600 nm) on LPANP surfaces. LPANP exhibited high optical transparency (>95% in the visible region) and high haze (>77%), with good wet mechanical properties (107.5 MPa) and thermal stability. In addition, LPANP hydrophobic properties were significantly improved after PMMA/AVB particle absorption, achieving conversion from hydrophilicity to hydrophobicity. Consequently, with the properties of water resistance, optical haze, and range-broadening UV-blocking, these LPANP presented potential applications in the field of optoelectronic devices, such as in UV-blocking, supercapacitors, and electronic device substrates.

中文翻译:

通过聚甲基丙烯酸甲酯/阿伏苯宗的表面自吸收,纤维素纳米纸的增广紫外线阻滞调节

具有可回收性和优异光学性能的基于纤维素纳米纸的材料近来受到越来越多的关注。通过自吸收聚(甲基丙烯酸甲酯)(PMMA)/阿伏苯宗(AVB)制得一系列含木质素(按重量计分别为17.2%,14.7%,7.3%,4.9%和1.3%)的原始纳米纸(LNP),以生产纤维素纳米纸(LPANPs)具有范围扩大和紫外线(UV)阻止的功能,从UVB(290-320 nm)扩展到UVA(320-400 nm)。扫描电镜结果表明,PMMA / AVB在LPANP表面呈现出微球形形态(150–600 nm)。LPANP表现出高的光学透明性(在可见光区域> 95%)和高的雾度(> 77%),具有良好的湿机械性能(107.5 MPa)和热稳定性。此外,吸收PMMA / AVB颗粒后,LPANP疏水性得到了显着改善,实现从亲水性到疏水性的转化。因此,这些LPANP具有耐水性,光学雾度和增宽紫外线阻挡的特性,因此在光电器件领域(例如,紫外线阻挡,超级电容器和电子器件基板)具有潜在的应用前景。
更新日期:2019-10-29
down
wechat
bug