Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Synthesis and High-Pressure Mechanical Properties of Superhard Rhenium/Tungsten Diboride Nanocrystals.
ACS Nano ( IF 15.8 ) Pub Date : 2019-08-19 , DOI: 10.1021/acsnano.9b02103 Jialin Lei 1 , Shanlin Hu 1 , Christopher L Turner 1 , Keyu Zeng 1 , Michael T Yeung 1 , Jinyuan Yan 2 , Richard B Kaner 1, 3, 4 , Sarah H Tolbert 1, 3, 4
ACS Nano ( IF 15.8 ) Pub Date : 2019-08-19 , DOI: 10.1021/acsnano.9b02103 Jialin Lei 1 , Shanlin Hu 1 , Christopher L Turner 1 , Keyu Zeng 1 , Michael T Yeung 1 , Jinyuan Yan 2 , Richard B Kaner 1, 3, 4 , Sarah H Tolbert 1, 3, 4
Affiliation
Rhenium diboride is an established superhard compound that can scratch diamond and can be readily synthesized under ambient pressure. Here, we demonstrate two synergistic ways to further enhance the already high yield strength of ReB2. The first approach builds on previous reports where tungsten is doped into ReB2 at concentrations up to 48 at. %, forming a rhenium/tungsten diboride solid solution (Re0.52W0.48B2). In the second approach, the composition of both materials is maintained, but the particle size is reduced to the nanoscale (40-150 nm). Bulk samples were synthesized by arc melting above 2500 °C, and salt flux growth at ∼850 °C was used to create nanoscale materials. In situ radial X-ray diffraction was then performed under high pressures up to ∼60 GPa in a diamond anvil cell to study mechanical properties including bulk modulus, lattice strain, and strength anisotropy. The differential stress for both Re0.52W0.48B2 and nano ReB2 (n-ReB2) was increased compared to bulk ReB2. In addition, the lattice-preferred orientation of n-ReB2 was experimentally measured. Under non-hydrostatic compression, n-ReB2 exhibits texture characterized by a maximum along the [001] direction, confirming that plastic deformation is primarily controlled by the basal slip system. At higher pressures, a range of other slip systems become active. Finally, both size and solid-solution effects were combined in nanoscale Re0.52W0.48B2. This material showed the highest differential stress and bulk modulus, combined with suppression of the new slip planes that opened at high pressure in n-ReB2.
中文翻译:
超硬R /二硼化钨纳米晶的合成及高压力学性能。
二硼化is是一种成熟的超硬化合物,可以划伤钻石,并且可以在环境压力下轻松合成。在这里,我们展示了两种协同方式来进一步增强ReB2已经很高的屈服强度。第一种方法建立在以前的报道基础上,其中钨以最高48 at的浓度掺杂到ReB2中。%,形成a /二硼化钨固溶体(Re0.52W0.48B2)。在第二种方法中,两种材料的成分均保持不变,但颗粒尺寸减小至纳米级(40-150 nm)。在2500°C以上通过电弧熔化合成了大块样品,并在约850°C下使用了盐通量增长来制造纳米级材料。然后在高达60 GPa的高压下于金刚石砧座中进行原位放射状X射线衍射,以研究机械性能,包括体积模量,晶格应变和强度各向异性。与块状ReB2相比,Re0.52W0.48B2和纳米ReB2(n-ReB2)的差异应力都增加了。另外,通过实验测量了n-ReB2的晶格优先取向。在非静水压缩下,n-ReB2表现出的特征是沿着[001]方向的最大值,从而确认塑性变形主要受基底滑移系统控制。在更高的压力下,一系列其他滑移系统也开始起作用。最后,在纳米级Re0.52W0.48B2中结合了尺寸和固溶效应。该材料显示出最高的压差应力和体积模量,并抑制了在n-ReB2中在高压下打开的新滑动面。与块状ReB2相比,48B2和纳米ReB2(n-ReB2)有所增加。另外,通过实验测量了n-ReB2的晶格优先取向。在非静水压缩下,n-ReB2表现出的特征是沿着[001]方向的最大值,从而确认塑性变形主要受基底滑移系统控制。在更高的压力下,一系列其他滑移系统也开始起作用。最后,在纳米级Re0.52W0.48B2中结合了尺寸和固溶效应。该材料显示出最高的压差应力和体积模量,并抑制了在n-ReB2中在高压下打开的新滑动面。与块状ReB2相比,48B2和纳米ReB2(n-ReB2)有所增加。另外,通过实验测量了n-ReB2的晶格优先取向。在非静水压缩下,n-ReB2表现出的特征是沿着[001]方向的最大值,从而确认塑性变形主要受基底滑移系统控制。在更高的压力下,一系列其他滑移系统也开始起作用。最后,在纳米级Re0.52W0.48B2中结合了尺寸和固溶效应。该材料显示出最高的压差应力和体积模量,并抑制了在n-ReB2中在高压下打开的新滑动面。n-ReB2表现出的特征是沿着[001]方向的最大值,从而确认塑性变形主要受基底滑移系统控制。在更高的压力下,一系列其他滑移系统也开始起作用。最后,在纳米级Re0.52W0.48B2中结合了尺寸和固溶效应。这种材料表现出最高的压差应力和体积模量,同时抑制了在n-ReB2中在高压下打开的新滑动面。n-ReB2表现出的特征是沿着[001]方向的最大值,从而确认塑性变形主要受基底滑移系统控制。在更高的压力下,一系列其他滑移系统也开始起作用。最后,在纳米级Re0.52W0.48B2中结合了尺寸和固溶效应。该材料显示出最高的压差应力和体积模量,并抑制了在n-ReB2中在高压下打开的新滑动面。
更新日期:2019-08-20
中文翻译:
超硬R /二硼化钨纳米晶的合成及高压力学性能。
二硼化is是一种成熟的超硬化合物,可以划伤钻石,并且可以在环境压力下轻松合成。在这里,我们展示了两种协同方式来进一步增强ReB2已经很高的屈服强度。第一种方法建立在以前的报道基础上,其中钨以最高48 at的浓度掺杂到ReB2中。%,形成a /二硼化钨固溶体(Re0.52W0.48B2)。在第二种方法中,两种材料的成分均保持不变,但颗粒尺寸减小至纳米级(40-150 nm)。在2500°C以上通过电弧熔化合成了大块样品,并在约850°C下使用了盐通量增长来制造纳米级材料。然后在高达60 GPa的高压下于金刚石砧座中进行原位放射状X射线衍射,以研究机械性能,包括体积模量,晶格应变和强度各向异性。与块状ReB2相比,Re0.52W0.48B2和纳米ReB2(n-ReB2)的差异应力都增加了。另外,通过实验测量了n-ReB2的晶格优先取向。在非静水压缩下,n-ReB2表现出的特征是沿着[001]方向的最大值,从而确认塑性变形主要受基底滑移系统控制。在更高的压力下,一系列其他滑移系统也开始起作用。最后,在纳米级Re0.52W0.48B2中结合了尺寸和固溶效应。该材料显示出最高的压差应力和体积模量,并抑制了在n-ReB2中在高压下打开的新滑动面。与块状ReB2相比,48B2和纳米ReB2(n-ReB2)有所增加。另外,通过实验测量了n-ReB2的晶格优先取向。在非静水压缩下,n-ReB2表现出的特征是沿着[001]方向的最大值,从而确认塑性变形主要受基底滑移系统控制。在更高的压力下,一系列其他滑移系统也开始起作用。最后,在纳米级Re0.52W0.48B2中结合了尺寸和固溶效应。该材料显示出最高的压差应力和体积模量,并抑制了在n-ReB2中在高压下打开的新滑动面。与块状ReB2相比,48B2和纳米ReB2(n-ReB2)有所增加。另外,通过实验测量了n-ReB2的晶格优先取向。在非静水压缩下,n-ReB2表现出的特征是沿着[001]方向的最大值,从而确认塑性变形主要受基底滑移系统控制。在更高的压力下,一系列其他滑移系统也开始起作用。最后,在纳米级Re0.52W0.48B2中结合了尺寸和固溶效应。该材料显示出最高的压差应力和体积模量,并抑制了在n-ReB2中在高压下打开的新滑动面。n-ReB2表现出的特征是沿着[001]方向的最大值,从而确认塑性变形主要受基底滑移系统控制。在更高的压力下,一系列其他滑移系统也开始起作用。最后,在纳米级Re0.52W0.48B2中结合了尺寸和固溶效应。这种材料表现出最高的压差应力和体积模量,同时抑制了在n-ReB2中在高压下打开的新滑动面。n-ReB2表现出的特征是沿着[001]方向的最大值,从而确认塑性变形主要受基底滑移系统控制。在更高的压力下,一系列其他滑移系统也开始起作用。最后,在纳米级Re0.52W0.48B2中结合了尺寸和固溶效应。该材料显示出最高的压差应力和体积模量,并抑制了在n-ReB2中在高压下打开的新滑动面。