当前位置:
X-MOL 学术
›
Nano Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Anisotropic Enhancement of Second-Harmonic Generation in Monolayer and Bilayer MoS2 by Integrating with TiO2 Nanowires
Nano Letters ( IF 9.6 ) Pub Date : 2019-05-28 00:00:00 , DOI: 10.1021/acs.nanolett.9b01933 Dawei Li 1, 2 , Chengyiran Wei 3, 4 , Jingfeng Song 1 , Xi Huang 3 , Fei Wang 5 , Kun Liu 6 , Wei Xiong 4 , Xia Hong 1 , Bai Cui 5 , Aixin Feng 2 , Lan Jiang 7 , Yongfeng Lu 3
Nano Letters ( IF 9.6 ) Pub Date : 2019-05-28 00:00:00 , DOI: 10.1021/acs.nanolett.9b01933 Dawei Li 1, 2 , Chengyiran Wei 3, 4 , Jingfeng Song 1 , Xi Huang 3 , Fei Wang 5 , Kun Liu 6 , Wei Xiong 4 , Xia Hong 1 , Bai Cui 5 , Aixin Feng 2 , Lan Jiang 7 , Yongfeng Lu 3
Affiliation
The ability to design and enhance the nonlinear optical responses in two-dimensional (2D) transition-metal dichalcogenides (TMDCs) is both of fundamental interest and highly desirable for developing TMDC-based nonlinear optical applications, such as nonlinear convertors and optical modulators. Here, we report for the first time a strong anisotropic enhancement of optical second-harmonic generation (SHG) in monolayer molybdenum disulfide (MoS2) by integrating with one-dimensional (1D) titanium dioxide nanowires (NWs). The SHG signal from the MoS2/NW hybrid structures is over 2 orders of magnitude stronger than that in the bare monolayer MoS2. Polarized SHG measurements revealed a giant anisotropy in SHG response of the MoS2/NW hybrid. The pattern of the anisotropic SHG depends highly on the stacking angle between the nanowire direction and the MoS2 crystal orientation, which is attributed to the 1D NW-induced directional strain fields in the layered MoS2. A similar effect has also been observed in bilayer MoS2/NW hybrid structure, further proving the proposed scenario. This work provides an effective approach to selectively and directionally designing the nonlinear optical response of layered TMDCs, paving the way for developing high-performance, anisotropic nonlinear photonic nanodevices.
中文翻译:
通过与TiO 2纳米线集成,各向异性增强单层和双层MoS 2中二次谐波的产生
设计和增强二维(2D)过渡金属双金属二卤化物(TMDC)中的非线性光学响应的能力对于开发基于TMDC的非线性光学应用(例如非线性转换器和光学调制器)既具有基本意义,也是非常需要的。在这里,我们首次报告了通过与一维(1D)二氧化钛纳米线(NWs)集成,在单层二硫化钼(MoS 2)中光学二次谐波产生(SHG)的强烈各向异性增强。来自MoS 2 / NW混合结构的SHG信号比裸单层MoS 2中的信号强2个数量级。极化SHG测量显示MoS 2的SHG响应存在巨大的各向异性/ NW混合。各向异性SHG的图案高度依赖于纳米线方向与MoS 2晶体取向之间的堆叠角,这归因于一维NW诱导的层状MoS 2中的定向应变场。在双层MoS 2 / NW混合结构中也观察到了类似的效果,进一步证明了提出的方案。这项工作为选择性地和有方向性地设计分层TMDC的非线性光学响应提供了一种有效的方法,为开发高性能,各向异性的非线性光子纳米器件铺平了道路。
更新日期:2019-05-28
中文翻译:
通过与TiO 2纳米线集成,各向异性增强单层和双层MoS 2中二次谐波的产生
设计和增强二维(2D)过渡金属双金属二卤化物(TMDC)中的非线性光学响应的能力对于开发基于TMDC的非线性光学应用(例如非线性转换器和光学调制器)既具有基本意义,也是非常需要的。在这里,我们首次报告了通过与一维(1D)二氧化钛纳米线(NWs)集成,在单层二硫化钼(MoS 2)中光学二次谐波产生(SHG)的强烈各向异性增强。来自MoS 2 / NW混合结构的SHG信号比裸单层MoS 2中的信号强2个数量级。极化SHG测量显示MoS 2的SHG响应存在巨大的各向异性/ NW混合。各向异性SHG的图案高度依赖于纳米线方向与MoS 2晶体取向之间的堆叠角,这归因于一维NW诱导的层状MoS 2中的定向应变场。在双层MoS 2 / NW混合结构中也观察到了类似的效果,进一步证明了提出的方案。这项工作为选择性地和有方向性地设计分层TMDC的非线性光学响应提供了一种有效的方法,为开发高性能,各向异性的非线性光子纳米器件铺平了道路。