当前位置:
X-MOL 学术
›
Nano Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Field-Effect Transistor and Photo-Transistor of Narrow-Band-Gap Nanocrystal Arrays Using Ionic Glasses
Nano Letters ( IF 9.6 ) Pub Date : 2019-05-06 00:00:00 , DOI: 10.1021/acs.nanolett.9b01305 Charlie Gréboval 1 , Ulrich Noumbe 2 , Nicolas Goubet 1, 3 , Clément Livache 1, 3 , Julien Ramade 1 , Junling Qu 1 , Audrey Chu 1 , Bertille Martinez 1, 3 , Yoann Prado 1 , Sandrine Ithurria 3 , Abdelkarim Ouerghi 4 , Herve Aubin 4 , Jean-Francois Dayen 2 , Emmanuel Lhuillier 1
Nano Letters ( IF 9.6 ) Pub Date : 2019-05-06 00:00:00 , DOI: 10.1021/acs.nanolett.9b01305 Charlie Gréboval 1 , Ulrich Noumbe 2 , Nicolas Goubet 1, 3 , Clément Livache 1, 3 , Julien Ramade 1 , Junling Qu 1 , Audrey Chu 1 , Bertille Martinez 1, 3 , Yoann Prado 1 , Sandrine Ithurria 3 , Abdelkarim Ouerghi 4 , Herve Aubin 4 , Jean-Francois Dayen 2 , Emmanuel Lhuillier 1
Affiliation
The gating of nanocrystal films is currently driven by two approaches: either the use of a dielectric such as SiO2 or the use of electrolyte. SiO2 allows fast bias sweeping over a broad range of temperatures but requires a large operating bias. Electrolytes, thanks to large capacitances, lead to the significant reduction of operating bias but are limited to slow and quasi-room-temperature operation. None of these operating conditions are optimal for narrow-band-gap nanocrystal-based phototransistors, for which the necessary large-capacitance gate has to be combined with low-temperature operation. Here, we explore the use of a LaF3 ionic glass as a high-capacitance gating alternative. We demonstrate for the first time the use of such ionic glasses to gate thin films made of HgTe and PbS nanocrystals. This gating strategy allows operation in the 180 to 300 K range of temperatures with capacitance as high as 1 μF·cm–2. We unveil the unique property of ionic glass gate to enable the unprecedented tunability of both magnitude and dynamics of the photocurrent thanks to high charge-doping capability within an operating temperature window relevant for infrared photodetection. We demonstrate that by carefully choosing the operating gate bias, the signal-to-noise ratio can be improved by a factor of 100 and the time response accelerated by a factor of 6. Moreover, the good transparency of LaF3 substrate allows back-side illumination in the infrared range, which is highly valuable for the design of phototransistors.
中文翻译:
使用离子玻璃的窄带隙纳米晶体阵列的场效应晶体管和光电晶体管
当前,纳米晶膜的门控通过两种方法来驱动:或者使用诸如SiO 2之类的电介质,或者使用电解质。SiO 2可以在较宽的温度范围内进行快速偏置扫描,但需要较大的工作偏置。电解质由于具有大电容而导致工作偏压的显着降低,但仅限于慢速和准室温操作。对于窄带隙基于纳米晶体的光电晶体管,所有这些工作条件都不是最佳选择,对于这些晶体管,必需的大电容栅极必须与低温工作相结合。在这里,我们探索LaF 3的使用离子玻璃作为高电容门控的替代方案。我们首次证明了使用这种离子玻璃来栅制由HgTe和PbS纳米晶体制成的薄膜。这种门控策略允许在180至300 K的温度范围内操作,电容高达1μF·cm –2。我们揭示了离子玻璃门的独特特性,这归功于在与红外光检测相关的工作温度范围内的高电荷掺杂能力,从而实现了光电流大小和动态变化的前所未有的可调性。我们证明,通过仔细选择工作栅极偏置,可以将信噪比提高100倍,将时间响应提高6倍。此外,LaF 3的良好透明性 基板允许在红外范围内进行背面照明,这对于光电晶体管的设计非常有价值。
更新日期:2019-05-06
中文翻译:
使用离子玻璃的窄带隙纳米晶体阵列的场效应晶体管和光电晶体管
当前,纳米晶膜的门控通过两种方法来驱动:或者使用诸如SiO 2之类的电介质,或者使用电解质。SiO 2可以在较宽的温度范围内进行快速偏置扫描,但需要较大的工作偏置。电解质由于具有大电容而导致工作偏压的显着降低,但仅限于慢速和准室温操作。对于窄带隙基于纳米晶体的光电晶体管,所有这些工作条件都不是最佳选择,对于这些晶体管,必需的大电容栅极必须与低温工作相结合。在这里,我们探索LaF 3的使用离子玻璃作为高电容门控的替代方案。我们首次证明了使用这种离子玻璃来栅制由HgTe和PbS纳米晶体制成的薄膜。这种门控策略允许在180至300 K的温度范围内操作,电容高达1μF·cm –2。我们揭示了离子玻璃门的独特特性,这归功于在与红外光检测相关的工作温度范围内的高电荷掺杂能力,从而实现了光电流大小和动态变化的前所未有的可调性。我们证明,通过仔细选择工作栅极偏置,可以将信噪比提高100倍,将时间响应提高6倍。此外,LaF 3的良好透明性 基板允许在红外范围内进行背面照明,这对于光电晶体管的设计非常有价值。