当前位置:
X-MOL 学术
›
Anal. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Direct and Selective Electrochemical Vapor Trace Detection of Organic Peroxide Explosives via Surface Decoration
Analytical Chemistry ( IF 6.7 ) Pub Date : 2019-03-20 00:00:00 , DOI: 10.1021/acs.analchem.9b00257 Vadim Krivitsky , Boris Filanovsky , Vladimir Naddaka , Fernando Patolsky
Analytical Chemistry ( IF 6.7 ) Pub Date : 2019-03-20 00:00:00 , DOI: 10.1021/acs.analchem.9b00257 Vadim Krivitsky , Boris Filanovsky , Vladimir Naddaka , Fernando Patolsky
The ability to detect traces of highly energetic explosive materials sensitively, selectively, accurately, and rapidly could be of enormous benefit to civilian national security, military applications, and environmental monitoring. Unfortunately, the detection of explosives still poses a largely unmet arduous analytical problem, making their detection an issue of burning immediacy and a massive current challenge in terms of research and development. Although numerous explosive detection approaches have been developed, these methods are usually time-consuming, require bulky equipment, tedious sample preparation, a trained operator, cannot be miniaturized, and lack the ability to perform automated real-time high-throughput analysis, strongly handicapping their mass deployment. Here, we present the first demonstration of the “direct” electrochemical approach for the sensitive, selective, and rapid vapor trace detection of TATP and HMTD, under ambient conditions, unaffected by the presence of oxygen and hydrogen peroxide species, down to concentrations lower than 10 ppb. The method is based on the use of Ag-nanoparticles-decorated carbon microfibers air-collecting electrodes (μCF), which allow for the selective direct detection of the organic peroxide explosives, through opening multiple redox routes, not existent in the undecorated carbon electrodes. Finally, we demonstrate the direct and rapid detection of TATP and HMTD explosive species from real-world air samples.
中文翻译:
通过表面装饰直接和选择性地电化学检测痕量有机过氧化物炸药
灵敏,选择性,准确和快速地检测高能爆炸性物质痕迹的能力可能对民用国家安全,军事应用和环境监测具有极大的好处。不幸的是,爆炸物的检测仍然构成一个尚未解决的艰巨的分析问题,这使得爆炸物的检测成为即时燃烧的问题,也是研究和开发方面当前面临的巨大挑战。尽管已经开发了多种爆炸物检测方法,但是这些方法通常很耗时,需要笨重的设备,繁琐的样品制备,训练有素的操作员,无法小型化并且缺乏执行自动实时高通量分析,严重阻碍的能力他们的大规模部署。这里,我们展示了“直接”电化学方法的首次演示,该方法可在环境条件下,不受氧和过氧化氢物质的存在(浓度低至10 ppb以下)的影响,对TATP和HMTD进行灵敏,选择性和快速的蒸气痕量检测。该方法基于使用银纳米粒子修饰的碳微纤维集气电极(μCF),该电极通过打开未修饰的碳电极中不存在的多个氧化还原途径,可以选择性地直接检测有机过氧化物炸药。最后,我们展示了从现实世界的空气样本中直接快速检测TATP和HMTD爆炸物的能力。浓度低于10 ppb的氧气和过氧化氢种类均不会受到影响。该方法基于使用银纳米粒子修饰的碳微纤维集气电极(μCF),该电极通过打开未修饰的碳电极中不存在的多个氧化还原途径,可以选择性地直接检测有机过氧化物炸药。最后,我们展示了从现实世界的空气样本中直接快速检测TATP和HMTD爆炸物的能力。浓度低于10 ppb的氧气和过氧化氢的存在不会受到影响。该方法基于使用银纳米粒子修饰的碳微纤维集气电极(μCF),该电极通过打开未修饰的碳电极中不存在的多个氧化还原途径,可以选择性地直接检测有机过氧化物炸药。最后,我们展示了从现实世界的空气样本中直接快速检测TATP和HMTD爆炸物的能力。在未装饰的碳电极中不存在。最后,我们展示了从实际空气样本中直接快速检测TATP和HMTD爆炸物的能力。在未装饰的碳电极中不存在。最后,我们展示了从现实世界的空气样本中直接快速检测TATP和HMTD爆炸物的能力。
更新日期:2019-03-20
中文翻译:
通过表面装饰直接和选择性地电化学检测痕量有机过氧化物炸药
灵敏,选择性,准确和快速地检测高能爆炸性物质痕迹的能力可能对民用国家安全,军事应用和环境监测具有极大的好处。不幸的是,爆炸物的检测仍然构成一个尚未解决的艰巨的分析问题,这使得爆炸物的检测成为即时燃烧的问题,也是研究和开发方面当前面临的巨大挑战。尽管已经开发了多种爆炸物检测方法,但是这些方法通常很耗时,需要笨重的设备,繁琐的样品制备,训练有素的操作员,无法小型化并且缺乏执行自动实时高通量分析,严重阻碍的能力他们的大规模部署。这里,我们展示了“直接”电化学方法的首次演示,该方法可在环境条件下,不受氧和过氧化氢物质的存在(浓度低至10 ppb以下)的影响,对TATP和HMTD进行灵敏,选择性和快速的蒸气痕量检测。该方法基于使用银纳米粒子修饰的碳微纤维集气电极(μCF),该电极通过打开未修饰的碳电极中不存在的多个氧化还原途径,可以选择性地直接检测有机过氧化物炸药。最后,我们展示了从现实世界的空气样本中直接快速检测TATP和HMTD爆炸物的能力。浓度低于10 ppb的氧气和过氧化氢种类均不会受到影响。该方法基于使用银纳米粒子修饰的碳微纤维集气电极(μCF),该电极通过打开未修饰的碳电极中不存在的多个氧化还原途径,可以选择性地直接检测有机过氧化物炸药。最后,我们展示了从现实世界的空气样本中直接快速检测TATP和HMTD爆炸物的能力。浓度低于10 ppb的氧气和过氧化氢的存在不会受到影响。该方法基于使用银纳米粒子修饰的碳微纤维集气电极(μCF),该电极通过打开未修饰的碳电极中不存在的多个氧化还原途径,可以选择性地直接检测有机过氧化物炸药。最后,我们展示了从现实世界的空气样本中直接快速检测TATP和HMTD爆炸物的能力。在未装饰的碳电极中不存在。最后,我们展示了从实际空气样本中直接快速检测TATP和HMTD爆炸物的能力。在未装饰的碳电极中不存在。最后,我们展示了从现实世界的空气样本中直接快速检测TATP和HMTD爆炸物的能力。