当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Nitrogen‐Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells
Advanced Materials ( IF 27.4 ) Pub Date : 2018-01-24 , DOI: 10.1002/adma.201706758 Xiao Xia Wang 1, 2 , David A. Cullen 3 , Yung-Tin Pan 4 , Sooyeon Hwang 5 , Maoyu Wang 6 , Zhenxing Feng 6 , Jingyun Wang 1 , Mark H. Engelhard 7 , Hanguang Zhang 1 , Yanghua He 1 , Yuyan Shao 7 , Dong Su 5 , Karren L. More 8 , Jacob S. Spendelow 4 , Gang Wu 1
Advanced Materials ( IF 27.4 ) Pub Date : 2018-01-24 , DOI: 10.1002/adma.201706758 Xiao Xia Wang 1, 2 , David A. Cullen 3 , Yung-Tin Pan 4 , Sooyeon Hwang 5 , Maoyu Wang 6 , Zhenxing Feng 6 , Jingyun Wang 1 , Mark H. Engelhard 7 , Hanguang Zhang 1 , Yanghua He 1 , Yuyan Shao 7 , Dong Su 5 , Karren L. More 8 , Jacob S. Spendelow 4 , Gang Wu 1
Affiliation
Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt‐free and Fe‐free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high‐performance nitrogen‐coordinated single Co atom catalyst is derived from Co‐doped metal‐organic frameworks (MOFs) through a one‐step thermal activation. Aberration‐corrected electron microscopy combined with X‐ray absorption spectroscopy virtually verifies the CoN4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half‐wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe‐based catalysts and 60 mV lower than Pt/C ‐60 μg Pt cm−2). Fuel cell tests confirm that catalyst activity and stability can translate to high‐performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well‐dispersed CoN4 active sites embedded in 3D porous MOF‐derived carbon particles, omitting any inactive Co aggregates.
中文翻译:
氮配位的单钴原子催化剂,用于质子交换膜燃料电池中的氧还原
由于Fenton反应,电极中Fe和过氧化物的存在会产生自由基,导致有机离聚物和膜的严重降解。因此,耐用且廉价的质子交换膜燃料电池(PEMFC)迫切需要无Pt和无Fe阴极催化剂。本文中,一种高性能的氮配位单Co原子催化剂是通过一步热活化从掺Co的金属有机骨架(MOF)中获得的。像差校正电子显微镜与X射线吸收光谱相结合实际上验证了CoN 4催化剂中原子级的配位。通过研究Co掺杂含量和热活化温度的影响,具有最佳化学和结构性能的原子Co分散原子催化剂在具有挑战性的酸性介质中(例如,半波电势)获得了可观的活性和氧还原反应(ORR)的稳定性。与可逆氢电极(RHE)相比为0.80 V,其性能与铁基催化剂相当,比Pt / C -60μgPt cm -2低60 mV )。燃料电池测试证实,催化剂的活性和稳定性可以转化为PEMFC中的高性能阴极。ORR性能显着增强归因于分散良好的CoN 4的存在 嵌入在3D多孔MOF衍生的碳颗粒中的活性位点,省略了任何非活性的Co聚集体。
更新日期:2018-01-24
中文翻译:
氮配位的单钴原子催化剂,用于质子交换膜燃料电池中的氧还原
由于Fenton反应,电极中Fe和过氧化物的存在会产生自由基,导致有机离聚物和膜的严重降解。因此,耐用且廉价的质子交换膜燃料电池(PEMFC)迫切需要无Pt和无Fe阴极催化剂。本文中,一种高性能的氮配位单Co原子催化剂是通过一步热活化从掺Co的金属有机骨架(MOF)中获得的。像差校正电子显微镜与X射线吸收光谱相结合实际上验证了CoN 4催化剂中原子级的配位。通过研究Co掺杂含量和热活化温度的影响,具有最佳化学和结构性能的原子Co分散原子催化剂在具有挑战性的酸性介质中(例如,半波电势)获得了可观的活性和氧还原反应(ORR)的稳定性。与可逆氢电极(RHE)相比为0.80 V,其性能与铁基催化剂相当,比Pt / C -60μgPt cm -2低60 mV )。燃料电池测试证实,催化剂的活性和稳定性可以转化为PEMFC中的高性能阴极。ORR性能显着增强归因于分散良好的CoN 4的存在 嵌入在3D多孔MOF衍生的碳颗粒中的活性位点,省略了任何非活性的Co聚集体。