当前位置: X-MOL 学术Chem. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum Dot Color-Converting Solids Operating Efficiently in the kW/cm2 Regime
Chemistry of Materials ( IF 7.2 ) Pub Date : 2017-05-31 00:00:00 , DOI: 10.1021/acs.chemmater.7b00164
Cai-Feng Wang 1 , Fengjia Fan 1 , Randy P. Sabatini 1 , Oleksandr Voznyy 1 , Kristopher Bicanic 1 , Xiyan Li 1 , Daniel P. Sellan 1 , Mayuran Saravanapavanantham 1 , Nadir Hossain 1 , Kefan Chen 1 , Sjoerd Hoogland 1 , Edward H. Sargent 1
Affiliation  

With rapid progress in the use of colloidal quantum dots (QDs) as light emitters, the next challenge for this field is to achieve high brightness. Unfortunately, Auger recombination militates against high emission efficiency at multiexciton excitation levels. Here, we suppress the Auger-recombination-induced photoluminescence (PL) quantum yield (QY) loss in CdSe/CdS core–shell QDs by reducing the absorption cross section at excitation wavelengths via a thin-shell design. Studies of PL vs shell thickness reveal that thin-shell QDs better retain their QY at high excitation intensities, in stark contrast to thicker-shell QDs. Ultrafast transient absorption spectroscopy confirms increased Auger recombination in thicker-shell QDs under equivalent external excitation intensities. We then further grow a thin ZnS layer on thin-shell QDs to serve as a higher conduction band barrier; this allows for better passivation and exciton confinement, while providing transparency at the excitation wavelength. Finally, we develop an isolating silica matrix that acts as a spacer between dots, greatly reducing interdot energy transfer that is otherwise responsible for PL reduction in QD films. This results in the increase of film PL QY from 20% to 65% at low excitation intensity. The combination of Auger reduction and elimination of energy transfer leads to QD film PL QY in excess of 50% and absolute power conversion efficiency of 28% at excitation powers of 1 kW/cm2, the highest ever reported for QDs under intense illumination.

中文翻译:

在kW / cm 2体制下有效运行的量子点变色固体

随着将胶体量子点(QD)用作发光体的迅速发展,该领域的下一个挑战是实现高亮度。不幸的是,俄歇复合不利于在多激子激发水平上的高发射效率。在这里,我们通过薄壳设计减小了激发波长处的吸收截面,从而抑制了CdSe / CdS核-壳QD中俄歇复合诱导的光致发光(PL)量子产率(QY)损失。PL与壳厚度的关系研究表明,与厚壳QD形成鲜明对比的是,薄壳QD在高激发强度下能更好地保持其QY。超快瞬态吸收光谱法证实了在相同的外部激发强度下,厚壳量子点中俄歇复合的增加。然后,我们在薄壳QD上进一步生长ZnS薄层,以用作更高的导带势垒。这允许更好的钝化和激子限制,同时在激发波长下提供透明性。最后,我们开发出一种隔离的二氧化硅基质,该基质可充当点之间的间隔物,从而大大减少了点间能量转移,而这种转移又会导致QD薄膜的PL降低。这导致膜PL QY在低激发强度下从20%增加到65%。俄歇减少和能量转移消除的结合导致在1 kW / cm的激发功率下QD薄膜PL QY超过50%,绝对功率转换效率达到28%我们开发了一种隔离的二氧化硅基质,可充当点之间的间隔物,从而极大地减少了点间能量转移,否则该能量转移可导致QD膜中的PL降低。这导致膜PL QY在低激发强度下从20%增加到65%。俄歇减少和能量转移消除的结合导致在1 kW / cm的激发功率下QD薄膜PL QY超过50%,绝对功率转换效率达到28%我们开发了一种隔离的二氧化硅基质,可充当点之间的间隔物,从而极大地减少了点间能量转移,否则该能量转移可导致QD薄膜的PL降低。这导致膜PL QY在低激发强度下从20%增加到65%。俄歇减少和能量转移消除的结合导致在1 kW / cm的激发功率下QD薄膜PL QY超过50%,绝对功率转换效率达到28%2,是有史以来在强光照射下量子点的最高报道。
更新日期:2017-06-09
down
wechat
bug