当前位置:
X-MOL 学术
›
ChemSusChem
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Fe2PO5‐Encapsulated Reverse Energetic ZnO/Fe2O3 Heterojunction Nanowire for Enhanced Photoelectrochemical Oxidation of Water
ChemSusChem ( IF 7.5 ) Pub Date : 2017-06-01 , DOI: 10.1002/cssc.201700501 Dong-Dong Qin 1 , Cai-Hua He 1 , Yang Li 1 , Antonio C. Trammel 2 , Jing Gu 2 , Jing Chen 1 , Yong Yan 3 , Duo-Liang Shan 1 , Qiu-Hong Wang 1 , Jing-Jing Quan 1 , Chun-Lan Tao 4 , Xiao-Quan Lu 1
ChemSusChem ( IF 7.5 ) Pub Date : 2017-06-01 , DOI: 10.1002/cssc.201700501 Dong-Dong Qin 1 , Cai-Hua He 1 , Yang Li 1 , Antonio C. Trammel 2 , Jing Gu 2 , Jing Chen 1 , Yong Yan 3 , Duo-Liang Shan 1 , Qiu-Hong Wang 1 , Jing-Jing Quan 1 , Chun-Lan Tao 4 , Xiao-Quan Lu 1
Affiliation
Zinc oxide is regarded as a promising candidate for application in photoelectrochemical water oxidation due to its higher electron mobility. However, its instability under alkaline conditions limits its application in a practical setting. Herein, we demonstrate an easily achieved wet‐chemical route to chemically stabilize ZnO nanowires (NWs) by protecting them with a thin layer Fe2O3 shell. This shell, in which the thickness can be tuned by varying reaction times, forms an intact interface with ZnO NWs, thus protecting ZnO from corrosion in a basic solution. The reverse energetic heterojunction nanowires are subsequently activated by introducing an amorphous iron phosphate, which substantially suppressed surface recombination as a passivation layer and improved photoelectrochemical performance as a potential catalyst. Compared with pure ZnO NWs (0.4 mA cm−2), a maximal photocurrent of 1.0 mA cm−2 is achieved with ZnO/Fe2O3 core–shell NWs and 2.3 mA cm−2 was achieved for the PH3‐treated NWs at 1.23 V versus RHE. The PH3 low‐temperature treatment creates a dual function, passivation and catalyst layer (Fe2PO5), examined by X‐ray photoelectron spectroscopy, TEM, photoelectrochemical characterization, and impedance measurements. Such a nano‐composition design offers great promise to improve the overall performance of the photoanode material.
中文翻译:
Fe2PO5包覆的反向高能ZnO / Fe2O3异质结纳米线用于增强水的光电化学氧化
氧化锌由于其较高的电子迁移率而被认为是在光电化学水氧化中应用的有前途的候选物。然而,其在碱性条件下的不稳定性限制了其在实际环境中的应用。在本文中,我们展示了一种易于实现的湿化学路线,可通过用薄层Fe 2 O 3保护它们来化学稳定ZnO纳米线(NW)壳。可以通过改变反应时间调节厚度的外壳,与ZnO NWs形成完整的界面,从而保护ZnO在碱性溶液中不受腐蚀。随后,通过引入无定形磷酸铁来激活反向高能异质结纳米线,该无定形磷酸铁实质上抑制了作为钝化层的表面重组并改善了作为潜在催化剂的光电化学性能。与纯ZnO NW(0.4 mA cm -2)相比,ZnO / Fe 2 O 3核壳型NW可获得最大1.0 mA cm -2的光电流,而经过PH 3处理的NW可获得2.3 mA cm -2的最大光电流。在1.23 V对RHE的条件下。PH 3低温处理产生双重功能,钝化层和催化剂层(Fe 2 PO 5),并通过X射线光电子能谱,TEM,光电化学特性和阻抗测量进行了检查。这种纳米组成的设计为改善光电阳极材料的整体性能提供了广阔的前景。
更新日期:2017-06-01
中文翻译:
Fe2PO5包覆的反向高能ZnO / Fe2O3异质结纳米线用于增强水的光电化学氧化
氧化锌由于其较高的电子迁移率而被认为是在光电化学水氧化中应用的有前途的候选物。然而,其在碱性条件下的不稳定性限制了其在实际环境中的应用。在本文中,我们展示了一种易于实现的湿化学路线,可通过用薄层Fe 2 O 3保护它们来化学稳定ZnO纳米线(NW)壳。可以通过改变反应时间调节厚度的外壳,与ZnO NWs形成完整的界面,从而保护ZnO在碱性溶液中不受腐蚀。随后,通过引入无定形磷酸铁来激活反向高能异质结纳米线,该无定形磷酸铁实质上抑制了作为钝化层的表面重组并改善了作为潜在催化剂的光电化学性能。与纯ZnO NW(0.4 mA cm -2)相比,ZnO / Fe 2 O 3核壳型NW可获得最大1.0 mA cm -2的光电流,而经过PH 3处理的NW可获得2.3 mA cm -2的最大光电流。在1.23 V对RHE的条件下。PH 3低温处理产生双重功能,钝化层和催化剂层(Fe 2 PO 5),并通过X射线光电子能谱,TEM,光电化学特性和阻抗测量进行了检查。这种纳米组成的设计为改善光电阳极材料的整体性能提供了广阔的前景。